Product Code Database
Example Keywords: super mario -battlefield $81
barcode-scavenger
   » » Wiki: Epitrochoid
Tag Wiki 'Epitrochoid'.
Tag

Epitrochoid
 (

In , an epitrochoid ( or ) is a roulette traced by a point attached to a of rolling around the outside of a fixed circle of radius , where the point is at a distance from the center of the exterior circle.

The parametric equations for an epitrochoid are:

\begin{align}
& x (\theta) = (R + r)\cos\theta - d\cos\left({R + r \over r}\theta\right) \\ & y (\theta) = (R + r)\sin\theta - d\sin\left({R + r \over r}\theta\right) \end{align} The parameter is geometrically the polar angle of the center of the exterior circle. (However, is not the polar angle of the point (x(\theta),y(\theta)) on the epitrochoid.)

Special cases include the limaçon with and the with .

The classic toy traces out epitrochoid and curves.

The paths of planets in the once popular geocentric system of deferents and epicycles are epitrochoids with d>r, for both the outer planets and the inner planets.

The orbit of the Moon, when centered around the Sun, approximates an epitrochoid.

The combustion chamber of the is an epitrochoid with , and .


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs