Product Code Database
Example Keywords: cap -software $59
   » » Wiki: Eigengrau
Tag Wiki 'Eigengrau'.
Tag

Eigengrau
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

Eigengrau ( for "intrinsic gray"; ), also called Eigenlicht ( and German for "intrinsic light"), dark light, or brain gray, is the uniform dark background color that many people report seeing in the absence of .

The term Eigenlicht dates back to the nineteenth century, and has rarely been used in recent scientific publications. Common scientific terms for the phenomenon include "visual noise" or "background adaptation". These terms arise due to the perception of an ever-changing field of tiny black and white dots seen in the phenomenon. There Are So Many Amazing Colors You Don’t Even Know About!, by Ben Davis, August 20, 2024, Artnet website.

Eigengrau is perceived as lighter than a object in normal lighting conditions, because contrast is more important to the visual system than absolute brightness. For example, the night sky looks darker than Eigengrau because of the contrast provided by the stars.

Contrast threshold data, collected by Blackwell and plotted by , shows Eigengrau occurring at adaptation below approximately 10− 5 cd m−2 (25.08 mag arcsec−2). This is a limiting case of Ricco's law.


Cause
Researchers noticed as early as 1860 that the shape of intensity-sensitivity curves could be explained by assuming that an intrinsic source of noise in the produces random events indistinguishable from those triggered by real .
(1972). 9780387051468, Springer-Verlag.
(1977). 9780120789504, Academic Press. .
Later experiments on of ( Rhinella marina) showed that the frequency of these spontaneous events is strongly temperature-dependent, which implies that they are caused by the thermal of . In human rod cells, these events occur about once every 100 seconds on average, which, taking into account the number of rhodopsin molecules in a rod cell, implies that the of a rhodopsin molecule is about 420 years. The indistinguishability of dark events from photon responses supports this explanation, because rhodopsin is at the input of the transduction chain. On the other hand, processes such as the spontaneous release of cannot be completely ruled out.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs