Deinterlacing is the process of converting interlaced video into a non-interlaced or Progressive scan form. Interlaced video signals are commonly found in analog television, VHS, Betamax, Video 8, digital home video tapes such as Digital8 and DV tapes, CED Disc, Laserdisc, digital television (HDTV) when in the 1080i format, some DVD titles, and a smaller number of Blu-ray discs.
An interlaced video frame consists of two fields taken in sequence: the first containing all the odd lines of the image, and the second all the even lines. Analog television employed this technique because it allowed for less transmission bandwidth while keeping a high frame rate for smoother and more life-like motion. A non-interlaced (or progressive scan) signal that uses the same bandwidth only updates the display half as often and was found to create a perceived flicker or stutter. CRT-based displays were able to display interlaced video correctly due to their complete analog nature, blending in the alternating lines seamlessly. However, since the early 2000s, displays such as televisions and computer monitors have become almost entirely digital—in that the display is composed of discrete pixels—and on such displays the interlacing becomes noticeable and can appear as a distracting visual defect. The deinterlacing process should try to minimize these.
Deinterlacing is thus a necessary process and comes built-in to most modern DVD players, Blu-ray players, LCD/LED televisions, digital projectors, TV set-top boxes, professional broadcast equipment, and computer video players and editors—although each with varying levels of quality.
Deinterlacing has been researched for decades and employs complex processing algorithms; however, consistent results have been very hard to achieve.
Since the interlaced signal contains the two fields of a video frame shot at two different times, it enhances motion perception to the viewer and reduces flicker by taking advantage of the persistence of vision effect. This results in an effective doubling of time resolution as compared with non-interlaced footage (for frame rates equal to field rates). However, interlaced signal requires a display that is natively capable of showing the individual fields in a sequential order, and only traditional cathode-ray tube-based TV sets are capable of displaying interlaced signal, due to the electronic scanning and lack of apparent fixed resolution.
Most modern displays, such as LCD, DLP and , are not able to work in interlaced mode, because they are fixed-resolution displays and only support progressive scanning. In order to display interlaced signal on such displays, the two interlaced fields must be converted to one Progressive scan frame with a process known as de-interlacing. However, when the two fields taken at different points in time are re-combined to a full frame displayed at once, visual defects called interlace artifacts or combing occur with moving objects in the image. A good deinterlacing algorithm should try to avoid interlacing artifacts as much as possible and not sacrifice image quality in the process, which is hard to achieve consistently. There are several techniques available that extrapolate the missing picture information, however they rather fall into the category of intelligent frame creation and require complex algorithms and substantial processing power.
Deinterlacing techniques require complex processing and thus can introduce a delay into the video feed. While not generally noticeable, this can result in the display of older video games Input lag behind controller input. Many TVs thus have a "game mode" in which minimal processing is done in order to maximize speed at the expense of image quality. Deinterlacing is only partly responsible for such lag; Video scaler also involves complex algorithms that take milliseconds to run.
Typical movie material is shot on 24 frames/s film. Converting film to interlaced video typically uses a process called telecine whereby each frame is converted to multiple fields. In some cases, each film frame can be presented by exactly two progressive segmented frames (PsF), and in this format it does not require a complex deinterlacing algorithm because each field contains a part of the very same progressive frame. However, to match 50 field interlaced PAL/SECAM or 59.94/60 field interlaced NTSC signal, frame rate conversion is necessary using various "pulldown" techniques. Most advanced TV sets can restore the original 24 frame/s signal using an inverse telecine process. Another option is to speed up 24-frame film by 4% (to 25 frames/s) for PAL/SECAM conversion; this method is still widely used for DVDs, as well as television broadcasts (SD & HD) in the PAL markets.
can either encode movies using one of these methods, or store original 24 frame/s progressive video and use MPEG-2 decoder tags to instruct the video player on how to convert them to the interlaced format. Most movies on have preserved the original non interlaced 24 frame/s motion film rate and allow output in the progressive 1080p24 format directly to display devices, with no conversion necessary.
Some 1080i HDV camcorders also offer PsF mode with cinema-like frame rates of 24 or 25 frame/s. TV production crews can also use special film cameras which operate at 25 or 30 frame/s, where such material does not need framerate conversion for broadcasting in the intended video system format.
There are various methods to deinterlace video, each producing different problems or artifacts of its own. Some methods are much cleaner in artifacts than other methods.
Most deinterlacing techniques fall under three broad groups:
Modern deinterlacing systems therefore buffer several fields and use techniques like edge detection in an attempt to find the motion between the fields. This is then used to interpolate the missing lines from the original field, reducing the combing effect.
Line doubling is sometimes confused with deinterlacing in general, or with interpolation (image scaling) which uses spatial filtering to generate extra lines and hence reduce the visibility of pixelation on any type of display. The terminology 'line doubler' is used more frequently in high end consumer electronics, while 'deinterlacing' is used more frequently in the computer and digital video arena.
The best algorithms also try to predict the direction and the amount of image motion between subsequent fields in order to better blend the two fields together. They may employ algorithms similar to block motion compensation used in video compression. For example, if two fields had a person's face moving to the left, weaving would create combing, and blending would create ghosting. Advanced motion compensation (ideally) would see that the face in several fields is the same image, just moved to a different position, and would try to detect direction and amount of such motion. The algorithm would then try to reconstruct the full detail of the face in both output frames by combining the images together, moving parts of each field along the detected direction by the detected amount of movement. Deinterlacers that use this technique are often superior because they can use information from many fields, as opposed to just one or two, however they require powerful hardware to achieve this in real-time.
Motion compensation needs to be combined with scene change detection (which has its own challenges), otherwise it will attempt to find motion between two completely different scenes. A poorly implemented motion compensation algorithm would interfere with natural motion and could lead to visual artifacts which manifest as "jumping" parts in what should be a stationary or a smoothly moving image.
Usually, to measure quality of deinterlacing method, the following approach is used:
The main speed measurement metric is Frame rate—how many frames deinterlacer is able to process per second. Talking about FPS, it is necessary to specify the resolution of all frames and hardware characteristics, because the speed of specific deinterlacing method significantly depends on these two factors.
VapourSynth TDeintMod author states that it is bi-directional motion adaptive deinterlacer. NNEDI method uses a Neural Network to deinterlace video sequences. FFmpeg Bob Weaver Deinterlacing Filter is the part of well-known framework for video and audio processing. Vapoursynth EEDI3 is the abbreviation for "enhanced edge directed interpolation 3", authors of this method state that it works by finding the best non-decreasing warping between two lines according to a cost functional. The authors of Real-Time Deep Video Deinterlacer use Deep CNN to get the best quality of output video.
Using a computer for playback and/or processing potentially allows a broader choice of video players and/or editing software not limited to the quality offered by the embedded consumer electronics device, so at least theoretically higher deinterlacing quality is possible – especially if the user can pre-convert interlaced video to progressive scan before playback and advanced and time-consuming deinterlacing algorithms (i.e. employing the "production" method).
However, the quality of both free and commercial consumer-grade software may not be up to the level of professional software and equipment. Also, most users are not trained in video production; this often causes poor results as many people do not know much about deinterlacing and are unaware that the frame rate is half the field rate. Many codecs/players do not even deinterlace by themselves and rely on the graphics card and video acceleration API to do proper deinterlacing.
Yves Faroudja, the founder of Faroudja and Emmy Award winner for his achievements in deinterlacing technology, stated that "interlace to progressive does not work" and advised against using interlaced signals.
Background
Progressive source material
Deinterlacing methods
Field combination deinterlacing
Field extension deinterlacing
Motion compensation deinterlacing
Quality Measurement
Benchmarks
Deinterlacing Challenge 2019
+ Another algorithms of Deinterlacing Challenge 2019 No No
MSU Deinterlacer Benchmark
+ Top algorithms of MSU DIB No Yes Yes Yes Yes Yes
Where deinterlacing is performed
Progressive media
Interlaced media
Concerns over effectiveness
See also
External links
|
|