Product Code Database
Example Keywords: ring -gran $45-141
   » Wiki: Ribose
Tag Wiki 'Ribose'.
Tag

Ribose is a and with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the from which is built, and so this compound is necessary for , decoding, and of . It has a structural analog, , which is a similarly essential component of . is an unnatural sugar that was first prepared by and in 1891. It was not until 1909 that and Walter Jacobs recognised that was a , the of Fischer and Piloty's product, and an essential component of .

(2025). 9780080562650, .
Fischer chose the name "ribose" as it is a partial rearrangement of the name of another sugar, , of which ribose is an at the 2' carbon; both names also relate to , from which arabinose was first isolated and from which they prepared .

Like most sugars, ribose exists as a mixture of in equilibrium with its linear form, and these readily interconvert especially in . The name "ribose" is used in biochemistry and biology to refer to all of these forms, though more specific names for each are used when required. In its linear form, ribose can be recognised as the sugar with all of its on the same side in its Fischer projection. has these hydroxyl groups on the right hand side and is associated with the systematic name (2 R,3 R,4 R)-2,3,4,5-tetrahydroxypentanal, whilst has its hydroxyl groups appear on the left hand side in a Fischer projection. Cyclisation of ribose occurs via formation due to attack on the by the C4' hydroxyl group to produce a form or by the C5' hydroxyl group to produce a form. In each case, there are two possible geometric outcomes, named as α- and β- and known as , depending on the at the hemiacetal carbon atom (the "anomeric carbon"). At room temperature, about 76% of is present in pyranose forms

(2025). 9781118681961, John Wiley & Sons.
(α:β = 1:2) and 24% in the furanose forms (α:β = 1:3), with only about 0.1% of the linear form present.
(1997). 9780120026449

The , , , and are all derivatives of β--ribofuranose. species that include ribose include ADP, ATP, , and NADH. cAMP and cGMP serve as secondary messengers in some signaling pathways and are also ribose derivatives. The ribose moiety appears in some pharmaceutical agents, including the antibiotics and .

(2025). 9781000650907, .


Synthesis and sources
Ribose as its 5-phosphate ester is typically produced from glucose by the pentose phosphate pathway. In at least some archaea, alternative pathways have been identified.

Ribose can be synthesized chemically, but commercial production relies on fermentation of glucose. Using genetically modified strains of B. subtilis, 90 g/liter of ribose can be produced from 200 g of glucose. The conversion entails the intermediacy of gluconate and ribulose.

Ribose has been detected in .


Structure
Ribose is an (a monosaccharide containing five atoms that, in its form, has an at one end). In the conventional numbering scheme for monosaccharides, the carbon atoms are numbered from C1' (in the aldehyde group) to C5'. The derivative found in DNA differs from ribose by having a atom in place of the group at C2'. This hydroxyl group performs a function in .

The "-" in the name -ribose refers to the of the chiral carbon atom farthest away from the aldehyde group (C4'). In -ribose, as in all -sugars, this carbon atom has the same configuration as in . File:Alpha-D-Ribopyranose numbered.png|α--Ribopyranose File:Beta-D-Ribopyranose numbered.png|β--Ribopyranose File:Alpha-D-Ribofuranose numbered.png|α--Ribofuranose File:Beta-D-Ribofuranose Numbered.png|β--Ribofuranose Relative abundance of forms of ribose in solution: β--ribopyranose (59%), α--ribopyranose (20%), β--ribofuranose (13%), α--ribofuranose (7%) and open chain (0.1%).

For ribose residues in and , the torsion angles for the rotation encompassing the bonds influence the configuration of the respective nucleoside and nucleotide. The secondary structure of a nucleic acid is determined by the rotation of its 7 .

(2025). 9780935702491, University Science Books. .
Having a large amount of torsion angles allows for greater flexibility.

In closed ring riboses, the observed flexibility mentioned above is not observed because the ring cycle imposes a limit on the number of torsion angles possible in the structure. Conformers of closed form riboses differ in regards to how the lone in the molecule is positioned respective to the (also known as a or just a base) attached to the ribose. If a carbon is facing towards the base, then the ribose is labeled as endo. If a carbon is facing away from the base, then the ribose is labeled as exo. If there is an oxygen molecule attached to the 2' carbon of a closed cycle ribose, then the exo confirmation is more stable because it decreases the interactions of the oxygen with the base. The difference itself is quite small, but when looking at an entire chain of RNA the slight difference amounts to a sizable impact. File:2' endo.jpg|2' endo File:2' endo 3' exo.jpg|2' endo 3' exo File:3' endo 2' exo.jpg|3' endo 2' exo File:3' endo.jpg|3' endo A ribose molecule is typically represented as a planar molecule on paper. Despite this, it is typically non-planar in nature. Even between hydrogen atoms, the many constituents on a ribose molecule cause and strain between them. To relieve this crowding and , the ring puckers, i.e. becomes non-planar.

(2025). 9780470570951, John Wiley & Sons, Inc. .
This puckering is achieved by displacing an atom from the plane, relieving the strain and yielding a more stable conformation. Puckering, otherwise known as the sugar ring conformation (specifically ribose sugar), can be described by the amplitude of pucker as well as the angle. The pseudo-rotation angle can be described as either "north (N)" or "south (S)" range. While both ranges are found in double helices, the north range is commonly associated with RNA and the . In contrast, the south range is associated with B form DNA. contains sugars in both the north and south ranges. When only a single atom is displaced, it is referred to as an "envelope" pucker. When two atoms are displaced, it is referred to as a "twist" pucker, in reference to the zigzag orientation. In an "endo" pucker, the major displacement of atoms is on the β-face, the same side as the C4'-C5' bond and the base. In an "exo" pucker, the major displacement of atoms is on the α-face, on the opposite side of the ring. The major forms of ribose are the 3'-endo pucker (commonly adopted by RNA and A-form DNA) and 2'-endo pucker (commonly adopted by B-form DNA).
(2025). 9780123695079, . .
These ring puckers are developed from changes in ring torsion angles; there are infinite combinations of angles so therefore, there is an infinite number of transposable pucker conformations, each separated by disparate activation energies.


Functions
ATP is derived from ribose; it contains one ribose, three groups, and an base. ATP is created during cellular respiration from adenosine diphosphate (ATP with one less phosphate group).


Signaling pathways
Ribose is a building block in secondary signaling molecules such as cyclic adenosine monophosphate (cAMP) which is derived from ATP. One specific case in which cAMP is used is in cAMP-dependent signaling pathways. In cAMP signaling pathways, either a stimulative or inhibitory hormone receptor is activated by a . These receptors are linked to a stimulative or inhibitory regulative G-protein. When a stimulative G-protein is activated, ATP into cAMP by using Mg2+ or Mn2+. cAMP, a secondary messenger, then goes on to activate protein kinase A, which is an that regulates cell . Protein kinase A regulates metabolic enzymes by which causes a change in the cell depending on the original signal molecule. The opposite occurs when an inhibitory G-protein is activated; the G-protein inhibits adenylyl cyclase and ATP is not converted to cAMP.


Metabolism
Ribose is referred to as the "molecular currency" because of its involvement in intracellular energy transfers. For example, nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide phosphate (NADP) all contain the -ribofuranose moiety. They can each be derived from -ribose after it is converted to -ribose 5-phosphate by the enzyme . NAD, FAD, and NADP act as electron acceptors in biochemical reactions in major metabolic pathways including , the citric acid cycle, , and the electron transport chain.


Nucleotide biosynthesis
Nucleotides are synthesized through salvage or de novo synthesis.
(2025). 9780323357623, Elsevier.
Nucleotide salvage uses pieces of previously made nucleotides and re-synthesizes them for future use. In de novo, amino acids, carbon dioxide, folate derivatives, and phosphoribosyl pyrophosphate (PRPP) are used to synthesize nucleotides. Both de novo and salvage require PRPP which is synthesized from ATP and ribose 5-phosphate by an enzyme called .


Modifications

Modifications in nature
catalyzes the conversion of -ribose to -ribose 5-phosphate. Once converted, -ribose-5-phosphate is available for the manufacturing of the and , or for use in the pentose phosphate pathway. The absorption of -ribose is 88–100% in the small intestines (up to 200 mg/kg·h).

One important modification occurs at the C2' position of the ribose molecule. By adding an group, the nuclear resistance of the RNA is increased because of additional stabilizing forces. These forces are stabilizing because of the increase of and an increase in the stability. The resulting increase of resistance leads to increases in the of siRNA and the potential therapeutic potential in cells and animals. The of ribose at particular sites is correlated with a decrease in immune stimulation.


Synthetic modifications
Along with phosphorylation, ribofuranose molecules can exchange their oxygen with and to produce similar sugars that only vary at the 4' position. These derivatives are more than the original molecule. Increased lipophilicity makes these species more suitable for use in techniques such as PCR, post-modification, , and for phasing X-ray crystallographic data.

Similar to the 2' modifications in nature, a synthetic modification of ribose includes the addition of at the 2' position. This ribose acts similar to the methylated ribose because it is capable of suppressing immune stimulation depending on the location of the ribose in the DNA strand. The big difference between methylation and fluorination, is the latter only occurs through synthetic modifications. The addition of fluorine leads to an increase in the stabilization of the glycosidic bond and an increase of intramolecular hydrogen bonds.


Medical uses
-ribose has been suggested for use in management of congestive heart failure (as well as other forms of heart disease) and for chronic fatigue syndrome (CFS), also called myalgic encephalomyelitis (ME) in an open-label non-blinded, non-randomized, and non-crossover subjective study.

Supplemental -ribose can bypass part of the pentose phosphate pathway, an energy-producing pathway, to produce -ribose-5-phosphate. The enzyme glucose-6-phosphate-dehydrogenase (G-6-PDH) is often in short supply in cells, but more so in diseased tissue, such as in cells in patients with cardiac disease. The supply of -ribose in the is directly correlated with ATP production; decreased -ribose supply reduces the amount of ATP being produced. Studies suggest that supplementing -ribose following tissue ischemia (e.g. myocardial ischemia) increases myocardial ATP production, and therefore mitochondrial function. Essentially, administering supplemental -ribose bypasses an enzymatic step in the pentose phosphate pathway by providing an alternate source of 5-phospho--ribose 1- for ATP production. Supplemental -ribose enhances recovery of ATP levels while also reducing cellular injury in humans and other animals. One study suggested that the use of supplemental -ribose reduces the instance of in men with diagnosed coronary artery disease. -Ribose has been used to treat many conditions, such as chronic fatigue syndrome, , and myocardial dysfunction. It is also used to reduce symptoms of cramping, pain, stiffness, etc. after exercise and to improve athletic performance.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time