Cycads are that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to Arecaceae or , they are sometimes mistaken for them, but they are not closely related to either group.
Cycads are gymnosperms (naked-seeded), meaning their fertilization seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized , usually a specific beetle, and more rarely a thrips or a moth.
Both male and female cycads bear cones (strobilus), somewhat similar to .
Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin.
Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.
Description
Cycads have a
cylindrical trunk which usually does not
branch. However, some types of cycads, such as
Cycas zeylanica, can branch their trunks. The apex of the stem is protected by modified leaves called
.
Leaves grow directly from the trunk, and typically fall when older, leaving a crown of leaves at the top. The leaves grow in a rosette, with new foliage emerging from the top and center of the crown. The trunk may be buried, so the leaves appear to be emerging from the ground, so the plant appears to be a basal rosette. The leaves are generally large in proportion to the trunk size, and sometimes even larger than the trunk.
The leaves are pinnate (in the form of bird feathers, pinnation), with a central leaf stalk from which parallel "ribs" emerge from each side of the stalk, perpendicular to it. The leaves are typically either compound (with leaflets emerging from the leaf stalk as "ribs"), or have edges (Leaf margin) so deeply cut () so as to appear compound. The Australian genus Bowenia and some Asian species of Cycas, like Cycas multipinnata, C. micholitzii and Cycas debaoensis, have leaves that are bipinnate, the leaflets each having their own subleaflets, growing Self-similar on the leaflet as the leaflets do on the stalk.
Confusion with palms
Due to superficial similarities in foliage and plant structure, cycads and
Arecaceae are often mistaken for each other. They also can occur in similar climates. However, they belong to different
Phylum and as such are not closely related. The similar structure is the product of convergent evolution.
Beyond those superficial resemblances, there are a number of differences between cycads and palms. For one, cycads are and bear cones (strobili), while palms are and so flower and bear fruit. The mature foliage looks similar between both groups, but the young emerging leaves of a cycad resemble a fiddlehead fern before they unfold and take their place in the rosette, while the leaves of palms are just small versions of the mature frond. Another difference is in the Plant stem. Both plants leave some scars on the stem below the rosette where there used to be leaves, but the scars of a cycad are Helical symmetry arranged and small, while the scars of palms are a circle that wraps around the whole stem. The stems of cycads are also in general rougher and shorter than those of palms.
Taxonomy
The two extant families of cycads both belong to the order
Cycadales, and are the
Cycadaceae and
Zamiaceae (including
Stangeriaceae). These cycads have changed little since the Jurassic in comparison to some other plant divisions. Five additional families belonging to the
Medullosales became extinct by the end of the Paleozoic Era.
Based on genetic studies, cycads are thought to be more closely related to Ginkgo than to other living gymnosperms. Both are thought to have diverged from each other during the early Carboniferous.
|
|
{ style="border:0; margin:auto;"
|
| |
|
|}
|
|
{ style="border:0; margin:auto;"
|
|
|}
Classification of the Cycadophyta to the rank of family.
-
Class Cycadopsida Brongniart 1843
-
Order Cycadales Persoon ex von Berchtold & Presl 1820
-
Suborder Cycadineae Stevenson 1992
-
Suborder Zamiineae Stevenson 1992
-
Family Zamiaceae Horaninow 1834
-
subfamily Diooideae Pilg. 1926
-
subfamily Zamioideae Stevenson 1992
-
Tribe Encephalarteae Miquel 1861
-
Tribe Zamieae Miquel 1861
Fossil genera
The following extinct cycad genera are known:
-
Amuriella Late Jurassic, Russian Far East (leaf fragments)
-
Androstrobus Triassic to Cretaceous, worldwide (leaf form genus)
-
Antarcticycas Middle Triassic, Antarctica (known from the whole plant)
-
? Anthrophyopsis Late Triassic, worldwide (leaf form genus, possibly a pteridospermatophyte)
-
Apoldia Triassic-Jurassic, Europe
-
Archaeocycas Early Permian, Texas (leaf with sporophylls)
-
Aricycas Late Triassic, Arizona (leaf form genus)
-
Beania (= Sphaereda), Triassic to Jurassic, Europe & Central Asia (leaf form genus)
-
Behuninia Late Jurassic, Colorado & Utah (fruiting structures)
-
Bucklandia Middle Jurassic to Early Cretaceous, Europe and India (leaf form genus)
-
Bureja Late Jurassic, Russia
-
Cavamonocolpites Early Cretaceous, Brazil (pollen)
-
Crossozamia Early to Late Permian, China (leaf form genus)
-
Ctenis Mesozoic-Paleogene, Worldwide (leaf form genus)
-
Ctenozamites Triassic-Cretaceous, worldwide (leaf form genus)
-
Cycadenia Triassic, Pennsylvania (trunks)
-
Cycadinorachis Late Jurassic, India (rachis)
-
Fascisvarioxylon Late Jurassic, India (petrified wood)
-
Gymnovulites, Latest Cretaceous/earliest Paleocene, India (seed)
-
Heilungia, Late Jurassic to early Cretaceous, Russia & Alaska (leaf form genus)
-
Leptocycas Late Triassic, North Carolina & China (known from the whole plant)
-
Mesosingeria, Jurassic to Early Cretaceous, Antarctica & Argentina (leaf form genus)
-
Michelilloa, Late Triassic, Argentina (stem)
-
? Nikania, Early Cretaceous, Russia (leaf fragments)
-
? Nilssonia, Middle Permian to Late Cretaceous, worldwide (leaf form genus) (possibly not a cycad)
-
? Nilssoniocladus, Early to Late Cretaceous, United States & Russia (stems, likely associated with Nilssonia, possibly deciduous)
-
Palaeozamia, Middle Jurassic, England
-
Paracycas, Middle Jurassic to Late Jurassic, Europe and Central Asia
-
? Phasmatocycas, Late Carboniferous to Early Permian, Kansas, Texas & New Mexico (leaf with sporophylls)
-
Pleiotrichium, Late Cretaceous, Germany (leaf)
-
Pseudoctenis, Late Permian to Late Cretaceous, worldwide (leaf form genus)
-
Sarmatiella, Late Triassic, Ukraine
-
Stangerites, Late Triassic to Early Jurassic, Virginia and Mexico (leaf form genus)
-
Sueria, Early Cretaceous, Argentina (leaf)
-
Taeniopteris, Carboniferous to Cretaceous, worldwide (polyphyletic leaf form genus, also includes bennettitales and Marattiales ferns)
Fossil record
The oldest probable cycad foliage is known from the latest Carboniferous-Early Permian of South Korea and China, such as
Crossozamia. Unambiguous fossils of cycads are known from the Early-Middle Permian onwards.
Cycads were generally uncommon during the Permian.
The two living cycad families are thought to have split from each other sometime between the Jurassic
and Carboniferous.
Cycads are thought to have reached their apex of diversity during the Mesozoic.
Although the Mesozoic is sometimes called the "Age of Cycads," some other groups of distantly related extinct seed plants with similar foliage, such as
Bennettitales and Nilssoniales were considerably more abundant than cycads during the Mesozoic, with true cycads being minor components of Mesozoic vegetation.
The oldest records of the modern genus
Cycas are from the Paleogene of East Asia.
Fossils assignable to Zamiaceae are known from the Cretaceous,
with fossils assignable to living genera of the family known from the Cenozoic.
Distribution
The living cycads are found across much of the
subtropical and
tropical parts of the world, with a few in temperate regions such as in Australia.
[Orchard, A.E. & McCarthy, P.M. (eds.) (1998). Flora of Australia 48: 1–766. Australian Government Publishing Service, Canberra.] The greatest diversity occurs in
South America and
Central America. They are also found in
Mexico, the
Antilles, southeastern United States,
Australia,
Melanesia,
Micronesia,
Japan,
China,
Southeast Asia,
Bangladesh,
India,
Sri Lanka,
Madagascar, and
Southern Africa and tropical
Africa, where at least 65
species occur. Some can survive in harsh
desert or semi-desert
(
xerophytic),
others in wet
rain forest conditions,
and some in both.
Some can grow in
sand or even on rock, some in oxygen-poor, swampy,
bog-like soils rich in
organic material. Some are able to grow in full sun, some in full shade, and some in both. Some are
Sodium chloride tolerant (
).
Species diversity of the extant cycads peaks at 17˚ 15"N and 28˚ 12"S, with a minor peak at the equator. There is therefore not a latitudinal diversity gradient towards the equator but towards the Tropic of Cancer and the Tropic of Capricorn. However, the peak near the northern tropic is largely due to Cycas in Asia and Zamia in the New World, whereas the peak near the southern tropic is due to Cycas again, and also to the diverse genus Encephalartos in southern and central Africa, and Macrozamia in Australia. Thus, the distribution pattern of cycad species with latitude appears to be an artifact of the geographical isolation of the remaining cycad genera and their species, and perhaps because they are partly xerophytic rather than simply tropical.
Cultural significance
Nuts of the
Cycas orientis (
nyathu) are coveted by the
Yolngu in Australia's
Arnhem Land as a source of food. They are harvested on their dry season to leach its poison under water overnight before ground into a paste, wrapped under bark and cooked on open fire until done.
Roots of
Zamia integrifolia were used by the
Seminole and other native peoples to produce Florida arrowroot by a similar process.
In Vanuatu, the cycad is known as namele and is an important symbol of traditional culture. It serves as a powerful taboo sign, and a pair of namele leaves appears on the national flag and coat of arms. Together with the nanggaria plant, another symbol of Vanuatu culture, the namele also gives its name to Nagriamel, an indigenous political movement.
See also
-
Fossil Cycad National Monument, now withdrawn, in the U.S. state of South Dakota
External links
-
Site with thousands of large, high quality photos of cycads and associated flora. Includes information on habitat and cultivation. (Site is dead.)
-
One of the largest collections of cycads in the world in Florida, U.S.A.
-
Cycad nitrogen fixation
-
Magazine article on cycad collectorship and cycad smuggling.