Contrails (; short for " condensation trails") or vapour trails are line-shaped clouds produced by aircraft engine exhaust or changes in air pressure, typically at aircraft cruising altitudes several kilometres/miles above the Earth surface. They are composed primarily of water, in the form of Ice crystal. The combination of water vapor in aircraft engine exhaust and the low ambient temperatures at high altitudes causes the trails' formation. Impurities in the engine exhaust from the fuel, including soot and sulfur compounds (0.05% by weight in jet fuel) provide some of the particles that serve as cloud condensation nuclei for water droplet growth in the exhaust. If water droplets form, they can freeze to form ice particles that compose a contrail. Their formation can also be triggered by changes in air pressure in wingtip vortices, or in the air over the entire wing surface. Contrails, and other clouds caused directly by human activity, are called homogenitus.
The vapor trails produced by Rocket are referred to as " missile contrails" or " rocket contrails." The water vapor and aerosol produced by rockets promote the "formation of Ice cloud in ice Supersaturation layers of the atmosphere." Missile contrail clouds mainly comprise "Oxide particles, high-temperature water vapor condensation particles, and other byproducts of Rocket engine."
Depending on the temperature and humidity at the altitude where the contrails form, they may be visible for only a few seconds or minutes, or may persist for hours and spread to be several kilometres/miles wide, eventually resembling natural cirrus cloud or altocumulus clouds. Persistent contrails are of particular interest to scientists because they increase the cloudiness of the atmosphere. The resulting cloud forms are formally described as homomutatus, and may resemble cirrus, cirrocumulus, or cirrostratus, and are sometimes called cirrus aviaticus. Some persistent spreading contrails contribute to climate change.
A 2013–2014 study jointly supported by NASA, the German aerospace center DLR, and Canada's National Research Council NRC, determined that could reduce contrail generation. This reduction was explained by demonstrating that biofuels produce fewer soot particles, which are the nuclei around which the ice crystals form. The tests were performed by flying a DC-8 at cruising altitude with a sample-gathering aircraft flying in trail. In these samples, the contrail-producing soot particle count was reduced by 50 to 70 percent, using a 50% blend of conventional Jet A1 fuel and HEFA (hydroprocessed esters and fatty acids) biofuel produced from camelina.
The visible cores of wingtip vortices contrast with the other major type of contrails which are caused by the combustion of fuel. Contrails produced from jet engine exhaust are seen at high altitude, directly behind each engine. By contrast, the visible cores of wingtip vortices are usually seen only at low altitude where the aircraft is travelling slowly after takeoff or before landing, and where the ambient humidity is higher; they trail behind the wingtips and wing flaps rather than behind the engines.
At high-thrust settings the fan blades at the intake of a turbofan engine reach transonic speeds, causing a sudden drop in air pressure. This creates the condensation fog (inside the intake) which is often observed by air travelers during takeoff.
The tips of rotating surfaces (such as propellers and Helicopter rotor) sometimes produce visible contrails.
In firearms, a vapor trail is sometimes observed when firing under rare conditions, due to condensation induced by changes in air pressure around the bullet. A vapor trail from a bullet is observable from any direction. Vapor trail should not be confused with bullet trace, a refractive effect due to changes in air pressure as the bullet travels, which is a much more common phenomenon (and is usually only observable directly from behind the shooter).
Starting from the 1990s, it was suggested that contrails during daytime have a strong cooling effect, and when combined with the warming from night-time flights, this would lead to a substantial diurnal temperature variation (the difference in the day's highs and lows at a fixed station). When no commercial aircraft flew across the USA following the September 11 attacks, the diurnal temperature variation was widened by . Measured across 4,000 in the continental United States, this increase was the largest recorded in 30 years. Without contrails, the local diurnal temperature range was higher than immediately before. In the southern US, the difference was diminished by about , and by in the US midwest. However, follow-up studies found that a natural change in cloud cover can more than explain these findings. The authors of a 2008 study wrote, "The variations in high cloud cover, including contrails and contrail-induced cirrus clouds, contribute weakly to the changes in the diurnal temperature range, which is governed primarily by lower altitude clouds, winds, and humidity."
In 2011, a study of British meteorological records taken during World War II identified one event where the temperature was higher than the day's average near used by USAAF after they flew in a formation. However, its authors cautioned that this was a single event, making it difficult to draw firm conclusions from it. Then, the global response to the 2020 coronavirus pandemic led to a reduction in global air traffic of nearly 70% relative to 2019. Thus, it provided an extended opportunity to study the impact of contrails on regional and global temperature. Multiple studies found "no significant response of diurnal surface air temperature range" as the result of contrail changes, and either "no net significant global ERF" (effective radiative forcing) or a very small warming effect.
An EU project launched in 2020 aims to assess the feasibility of minimising contrail effects by the operational choices in making flight plans. Other similar projects include ContrailNet from Eurocontrol, Reviate, and the Ciconia project, as well as Google's 'project contrails'.
Clouds form when invisible water vapor condenses into microscopic water droplets or into microscopic ice crystals. This may happen when air with a high proportion of gaseous water cools. A distrail forms when the heat of engine exhaust evaporates the liquid water droplets in a cloud, turning them back into invisible, gaseous water vapor. Distrails also may arise as a result of enhanced mixing (entrainment) of drier air immediately above or below a thin cloud layer following passage of an aircraft through the cloud, as shown in the second image below:
Condensation trails as a result of engine exhaust
Condensation from decreases in pressure
Impacts on climate
Head-on contrails
Distrails
See also
External links
|
|