Clay is a type of fine-grained natural soil material containing (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impurities, such as a reddish or brownish colour from small amounts of iron oxide.
Clays develop plasticity when wet but can be hardened through firing. Clay is the longest-known ceramic material. Prehistoric humans discovered the useful properties of clay and used it for making pottery. Some of the earliest pottery shards have been dated to around 14,000 BCE, and Clay tablet were the first known writing medium. Clay is used in many modern industrial processes, such as paper making, cement production, and chemical filtration. Between one-half and two-thirds of the world's population live or work in buildings made with clay, often baked into brick, as an essential part of its load-bearing structure. In agriculture, clay content is a major factor in determining land arable land. Clay soils are generally less suitable for crops due to poor natural drainage; however, clay soils are more fertile, due to higher cation-exchange capacity.
Clay is a very common substance. Shale, formed largely from clay, is the most common sedimentary rock. Although many naturally occurring deposits include both silts and clay, clays are distinguished from other fine-grained soils by differences in size and mineralogy. , which are fine-grained soils that do not include clay minerals, tend to have larger particle sizes than clays. Mixtures of sand, silt and less than 40% clay are called loam. Soils high in swelling clays (expansive clay), which are clay minerals that readily expand in volume when they absorb water, are a major challenge in civil engineering.
Clay has a high content of clay minerals that give it its plasticity. Clay minerals are hydrate aluminium phyllosilicate minerals, composed of aluminium and silicon ions bonded into tiny, thin plates by interconnecting oxygen and hydroxide ions. These plates are tough but flexible, and in moist clay, they adhere to each other. The resulting aggregates give clay the cohesion that makes it plastic. In kaolinite clay, the bonding between plates is provided by a film of water molecules that hydrogen bond the plates together. The bonds are weak enough to allow the plates to slip past each other when the clay is being moulded, but strong enough to hold the plates in place and allow the moulded clay to retain its shape after it is moulded. When the clay is dried, most of the water molecules are removed, and the plates form direct hydrogen bonds with each other, making the dried clay rigid but still fragile. If the clay is moistened again, it will once more become plastic. When the clay is fired to the earthenware stage, a dehydration reaction removes additional water from the clay, causing clay plates to irreversibly adhere to each other via stronger covalent bonding, which strengthens the material. The clay mineral kaolinite is transformed into a non-clay material, metakaolin, which remains rigid and hard if moistened again. Further firing through the stoneware and porcelain stages further recrystallizes the metakaolin into yet stronger minerals such as mullite.
The tiny size and plate form of clay particles gives clay minerals a high surface area. In some clay minerals, the plates carry a negative electrical charge that is balanced by a surrounding layer of positive ions (), such as sodium, potassium, or calcium. If the clay is mixed with a solution containing other cations, these can swap places with the cations in the layer around the clay particles, which gives clays a high capacity for ion exchange. The chemistry of clay minerals, including their capacity to retain nutrient cations such as potassium and ammonium, is important to soil fertility.
Clay is a common component of sedimentary rock. Shale is formed largely from clay and is the most common of sedimentary rocks. However, most clay deposits are impure. Many naturally occurring deposits include both silts and clay. Clays are distinguished from other fine-grained soils by differences in size and mineralogy. Silts, which are fine-grained soils that do not include clay minerals, tend to have larger particle sizes than clays. There is, however, some overlap in particle size and other physical properties. The distinction between silt and clay varies by discipline. and usually consider the separation to occur at a particle size of 2 Micrometre (clays being finer than silts), often use 4–5 μm, and colloid use 1 μm. Clay-size particles and clay minerals are not the same, despite a degree of overlap in their respective definitions. Geotechnical engineers distinguish between silts and clays based on the plasticity properties of the soil, as measured by the soils' Atterberg limits. ISO 14688 grades clay particles as being smaller than 2 μm and silt particles as being larger. Mixtures of sand, silt and less than 40% clay are called loam.
Some clay minerals (such as smectite) are described as swelling clay minerals, because they have a great capacity to take up water, and they increase greatly in volume when they do so. When dried, they shrink back to their original volume. This produces distinctive textures, such as or "popcorn" texture, in clay deposits. Soils containing swelling clay minerals (such as bentonite) pose a considerable challenge for civil engineering, because swelling clay can break foundations of buildings and ruin road beds.
The clay minerals formed depend on the composition of the source rock and the climate. Acid weathering of feldspar-rich rock, such as granite, in warm climates tends to produce kaolin. Weathering of the same kind of rock under alkaline conditions produces illite. Smectite forms by weathering of igneous rock under alkaline conditions, while gibbsite forms by intense weathering of other clay minerals.
There are two types of clay deposits: primary and secondary. Primary clays form as residual deposits in soil and remain at the site of formation. Secondary clays are clays that have been transported from their original location by water erosion and deposited in a new sedimentary deposit. Secondary clay deposits are typically associated with very low energy depositional environments such as large lakes and marine basins.
Varve (or varved clay) is clay with visible annual layers that are formed by seasonal deposition of those layers and are marked by differences in erosion and organic content. This type of deposit is common in former . When fine sediments are delivered into the calm waters of these glacial lake basins away from the shoreline, they settle to the lake bed. The resulting seasonal layering is preserved in an even distribution of clay sediment banding.
Quick clay is a unique type of marine clay indigenous to the glaciated terrains of Norway, North America, Northern Ireland, and Sweden. It is a highly sensitive clay, prone to liquefaction, and has been involved in several deadly .
Ancient peoples in Mesopotamia adopted clay tablets as the first known writing medium. Clay was chosen due to the local material being easy to work with and widely available. Scribes wrote on the tablets by inscribing them with a script known as cuneiform, using a blunt reed called a stylus, which effectively produced the wedge shaped markings of their writing. After being written on, clay tablets could be reworked into fresh tablets and reused if needed, or fired to make them permanent records. Nowadays, clay is added as a filler to graphite, in pencil lead, to change the hardness and blackness of the pencil. Purpose-made clay balls were used as sling ammunition. Clay is used in many industrial processes, such as paper making, cement production, and chemical filtering. Bentonite clay is widely used as a mold binder in the manufacture of .
Clay, relatively impermeable to water, is also used where natural seals are needed, such as in pond linings, the cores of , or as a barrier in against toxic seepage (lining the landfill, preferably in combination with ). Studies in the early 21st century have investigated clay's sorption capacities in various applications, such as the removal of heavy metals from waste water and air purification.
|
|