Cinnarizine is an antihistamine and calcium channel blocker of the diphenylmethylpiperazine group. It is prescribed for nausea and vomiting due to motion sickness or other sources such as chemotherapy, vertigo, or Ménière's disease. Cinnarizine is one of the leading causes of drug-induced parkinsonism.
Cinnarizine was first synthesized as R1575 by Janssen Pharmaceutica in 1955. The nonproprietary name is derived from the Cinnamyl alcohol substituent on the free nitrogen atom of the benzhydrylpiperazine core, combined with the generic ending "-rizine" for "antihistaminics/cerebral (or peripheral) vasodilators". It is not available in the United States or Canada. It has also been cited as one of the most used drugs for seasickness within the British Royal Navy.
In a clinical study (n=181), treatment with cinnarizine reduced the occurrence of moderate vertigo experience by 65.8% and extreme vertigo by 89.8%. It acts by interfering with the signal transmission between vestibular apparatus of the inner ear and the vomiting centre of the hypothalamus by limiting the activity of the vestibular hair cells which send signals about movement. The disparity of signal processing between inner ear motion sensory receptor and the visual senses is abolished, so that the confusion of brain whether the individual is moving or standing is reduced. Vomiting in motion sickness could be a physiological compensatory mechanism of the brain to keep the individual from moving so that it can adjust to the signal perception, but the true evolutionary reason for this malady is currently unknown.
When prescribed for balance problems and vertigo, cinnarizine is typically taken two or three times daily depending on the amount of each dose and when used to treat motion sickness, the pill is taken at least two hours before travelling and then again every four hours during travel. However, a recent 2012 study comparing the effects of cinnarizine to transdermal scopolamine for the treatment of seasickness, concluded that scopolamine was reported as significantly more effective and as having fewer adverse side effects than cinnarizine. This led to the conclusion that transdermal scopolamine is likely a better option for the treatment of motion sickness in naval crew and other sea travelers. However, due to increased levels of drowsiness caused by the medication, it is generally of limited use in pilots and aircrew who must be dependably alert.
Additionally, cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity which can result in seizures, and is a high risk in closed-circuit oxygen diving. This is also relevant to divers who could potentially have to undergo hypobaric decompression therapy, which uses high oxygen pressure and could also be affected by any cinnarizine-induced CNS oxygen toxicity risk. However, cinnarizine does not heighten toxicity risk, and in fact, evidence even seems to suggest that cinnarizine may be beneficial in helping delay O2 toxicity in the central nervous system. There is also evidence that cinnarizine may be used as an effective anti-asthma medication when taken regularly.
Beyond an anti-vertigo treatment, cinnarizine could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockade), which happen mostly in brain, and the fact that it is also used as a labyrinthine sedative. Cinnarizine inhibits the flow of calcium into red blood cells, which increases the elasticity of the cell wall, thereby increasing their flexibility and making the blood less viscous. This allows the blood to travel more efficiently and effectively through narrowed vessels in order to bring oxygen to damaged tissue. It is also effectively combined with other nootropics, primarily piracetam; in such combination each drug potentiates the other in boosting brain oxygen supply.RomPharm. Pyracin (piractam 400 mg and cinnarizine 25 mg). 2008 cited. An animal study comparing the effectiveness of cinnarizine and flunarizine (a derivative of cinnarizine that is 2.5-15 times stronger for treatment of transient global cerebral ischemia), it was found that cinnarizine helped to improve the functional abnormalities of ischemia, but did not help with damage to the neurons. Flunarizine offered more neuronal protection, but was less effective in treating subsequent behavioral changes.
Cinnarizine has also been found to be a valuable second-line treatment for idiopathic urticarial vasculitis.
Cinnarizine causes acute and chronic parkinsonism due to its affinity for D2 receptors, which strongly counter-suggests its actual usefulness for improving neurological health. Cinnarizine's antagonistic effects of D2 dopamine receptors in the striatum leads to symptoms of depression, tremor, muscle rigidity, tardive dyskinesia, and akathisia. 17 of 100 new parkinsonism cases are linked to administration of either cinnarizine or flunarizine. Drug induced parkinsonism is the second leading cause of parkinsonism. Evidence suggests that it is one of the metabolites of cinnarizine, C-2, that has an active role in contributing to the development of drug-induced parkinsonism. Those people especially at risk are elderly patients, in particular women, and patients who have been taking the drug for a longer amount of time. There is also evidence that patients with a family history of Parkinson's or a genetic predisposition to the disease are more likely to develop the drug induced form of this disease as a result of cinnarizine treatment.
In addition to antagonizing D2 receptors, treatment with cinnarizine leads to reduced presynaptic dopamine and serotonin, as well as alterations in vesicular transport of dopamine. Chronic treatment with cinnarizine builds the drug concentrations high enough that they interfere with the proton electrochemical gradient necessary for packaging dopamine into vesicles. Cinnarizine, pKa = 7.4, acts as a protonophore, which prevents the MgATP-dependent production of the electrochemical gradient crucial to the transport and storage of dopamine into vesicles, and thereby lowers the levels of dopamine in the basal ganglia neurons and leads to the Parkinson's symptoms.
Several cases of pediatric and adult cinnarizine overdose have been reported, with effects including a range of symptoms such as somnolence, coma, vomiting, hypotonia, stupor, and convulsions. The cognitive complications likely result from the antihistaminic effects of cinnarizine, while the motor effects are a product of the antidopaminergic properties. In cases of overdose, the patient should be brought to and observed in a hospital for potential neurological complications.
A study that administered 75 mg doses of cinnarizine, twice a day for twelve days, to healthy volunteers, observed that cinnarizine did accumulate in the body, with a steady-state accumulation factor of 2.79 ± 0.23. However, the AUCT for this amount of time (T=12 days) was not significantly different from the AUC∞, which was estimated from the single dose administration. As a very weakly basic and also lipophilic compound with low aqueous solubility, cinnarizine is able to cross the blood brain barrier by simple diffusion. It is because of this property that it is able to exert its effects on cerebral blood flow in the brain.
Bioavailability of orally administered cinnarizine is typically low and variable due to high incidence of degradation. However, it has been found that when administered intravenously in lipid emulsion, better pharmacokinetics and tissue distribution were achieved. The lipid emulsion administration had a higher AUC and lower clearance than the solution form, which meant that there was an increased bioavailability of cinnarizine, allowing for an improved therapeutic effect. Plasma pharmacokinetics of cinnarizine administered intravenously follows a three-compartment model first with a fast distribution phase, followed by a slower distribution phase, and ending with a very slow elimination. The Vss (steady state apparent volume of distribution) for lipid emulsion administration was 2× lower (6.871 ± 1.432 L/kg) than that of cinnarizine given in solution (14.018 ± 5.598 L/kg) and it was found that significantly less cinnarizine was taken up into the lung and brain in the lipid emulsion condition. This is significant because it would reduce the likelihood of toxic side effects in the central nervous system.
T-type calcium channels |
H1 receptors |
5-HT2 receptors |
D2 receptors |
|
|