Chytridiomycosis ( ) is an infectious disease in amphibians, caused by the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. Chytridiomycosis has been linked to dramatic population declines or extinctions of amphibian species in western North America, Central America, South America, eastern Australia, east Africa (Tanzania), and Dominica and Montserrat in the Caribbean. Much of the New World is also at risk of the disease arriving within the coming years. The fungus is capable of causing sporadic deaths in some amphibian populations and 100% mortality in others. No effective measure is known for control of the disease in wild populations. Various clinical signs are seen by individuals affected by the disease. A number of options are possible for controlling this disease-causing fungus, though none has proved to be feasible on a large scale. The disease has been proposed as a contributing factor to a global decline in amphibian populations that apparently has affected about 30% of the amphibian species of the world. Some research found evidence insufficient for linking chytrid fungi and chytridiomycosis to global amphibian declines, but more recent research establishes a connection and attributes the spread of the disease to its transmission through international trade routes into native ecosystems.
The disease in its epizootic form was first discovered in 1993 in dead and dying frogs in Queensland, Australia. It had been present in the country since at least 1978 and is widespread across Australia. It is also found in Africa, the Americas, Europe, New Zealand, and Oceania. In Australia, Panama, and New Zealand, the fungus seemed to have suddenly 'appeared' and expanded its range at the same time frog numbers declined. In the Americas, it originated in Venezuela in 1987, where it swept up the continent into Central America. It was also found in the lower part of Central America in 1987, where it spread down to meet the upward sweep from South America. However, it may simply be that the fungus occurs naturally and was only identified recently because it has become more virulent or more prevalent in the environment, or because host populations have become less resistant to the disease. The fungus has been detected in four areas of Australia—the east coast, Adelaide, south-west Western Australia and the Kimberley—and is probably present elsewhere. Lately, the genomes of 234 Batrachochytrium dendrobatidis isolates were phylogenetically compared and the results strongly suggest that a lineage found in the Korean peninsula likely seeded the panzootic.
Among frogs, the oldest documented occurrence of Batrachochytrium is from a specimen of a Titicaca water frog collected in 1863, and among salamanders the oldest was a Japanese giant salamander collected in 1902. However, both these involved strains of the fungus that have not been implicated in mass-mortality events. A later instance of a Bd-infected amphibian was a specimen of an African clawed frog ( Xenopus laevis) collected in 1938, and this species also appears to be essentially unaffected by the disease, making it a suitable vector.Weldon; du Preez; Hyatt; Muller; and Speare (2004). Origin of the Amphibian Chytrid Fungus. Emerging Infectious Diseases 10(12). The first well-documented method of human pregnancy testing, known as the frog test, involved this species, and as a result, large-scale international trade in living African clawed frogs began more than 60 years ago. If Batrachochytrium originated in Africa, the African clawed frog is thought to have been the vector of the initial spread out of the continent. The earliest documented case of the disease chytridiomycosis was an American bullfrog ( Rana catesbeiana) collected in 1978.
The range suitable for B. dendrobatidis in the New World is vast. Regions with its highest suitability include habitats that contain the world's most diverse amphibian fauna. Areas at risk are the Sierra Madre Pine Oak Occidental Forest, the Sonoran and Sinaloan dry forest, the Veracruz moist forest, Central America east from the Isthmus of Tehuantepec, the Caribbean Islands, the temperate forest in Chile and western Argentina south of 30°S, the Andes above 1000 m above sea level in Venezuela, Colombia, and Ecuador, eastern slopes of the Andes in Peru and Bolivia, the Brazilian Atlantic forest, Uruguay, Paraguay, and northeastern Argentina, as well as the southwestern and Madeira–Tapajós Amazonian rainforests.
Currently, the effects of chytridiomycosis are seen most readily in Central America, eastern Australia, South America, and western North America.
Much of how B. dendrobatidis is successfully transmitted from one host to the next is largely unknown. Once released into the aquatic environment, zoospores travel less than within 24 hours before they encyst. The limited range of B. dendrobatidis zoospores suggest some unknown mechanism exists by which they transmit from one host to the next, which can involve the pet trade, and especially the American bullfrog. Abiotic factors such as temperature, pH level, and nutrient levels affect the success of B. dendrobatidis zoospores. The fungus zoospores can survive within a temperature range of and a pH range of 6–7.
Chytridiomycosis is believed to follow this course: zoospores first encounter amphibian skin and quickly give rise to sporangia, which produce new zoospores. The disease then progresses as these new zoospores reinfect the host. Morphological changes in amphibians infected with the fungus include a reddening of the ventral skin, convulsions with extension of hind limbs, accumulations of sloughed skin over the body, sloughing of the superficial epidermis of the feet and other areas, slight roughening of the surface with minute skin tags, and occasional small ulcers or hemorrhage. Behavioral changes can include lethargy, a failure to seek shelter, a failure to flee, a loss of righting reflex, and abnormal posture (e.g., sitting with the hind legs away from the body).
Besides amphibians Chytridiomycosis also infects crayfish ( Procambarus alleni, P. clarkii, Orconectes virilis, and O. immunis) but not mosquitofish ( Gambusia holbrooki).
Although many declines have been credited to the fungus B. dendrobatidis—although likely prematurely so in many cases—some species resist the infection and some populations can survive with a low level of persistence of the disease. In addition, some species that seem to resist the infection may actually harbor a nonpathogenic form of B. dendrobatidis.
Some researchers contend the focus on chytridiomycosis has made amphibian conservation efforts dangerously myopic. A review of the data in the IUCN Red List found the threat of the disease was assumed in most cases, but no evidence shows, in fact, it is a threat. Conservation efforts in New Zealand continue to be focused on curing the critically endangered native Archey's frog, Leiopelma archeyi, of chytridiomycosis, though research has shown clearly that they are immune from infection by B. dendrobatidis and are dying in the wild of other still-to-be identified diseases. Waldman B (2011) Brief encounters with Archey's Frog. FrogLog 99:39–41. In Guatemala, several thousand tadpoles perished from an unidentified pathogen distinct from B. dendrobatidis.
A 2019 Science review assessed that chytridiomycosis was a factor in the decline of at least 501 amphibian species during the past 50 years, of which 90 species were confirmed or presumed to have gone extinct in the wild and another 124 had declined in numbers by more than 90%. The review characterized the overall toll as the "greatest recorded loss of biodiversity attributable to a disease". However, a follow-up study in Science found the 2019 study by Scheele et al. to be lacking in the necessary evidence to make these claims and found the conclusions could not be reproduced with the original study's data and methods. It remains unclear how many and which species have been impacted by chytridiomycosis, but there are good data for a limited number of species such as the mountain yellow-legged frog in the Sierra Nevada mountains.
Understanding the interactions of microbial communities present on amphibians' skin with fungal species in the environment can reveal why certain amphibians, such as the frog Rana muscosa, are susceptible to the fatal effects of B. dendrobatidis and why others, such as the salamander Hemidactylium scutatum, are able to coexist with the fungus. As mentioned before, the antifungal bacterial species Janthinobacterium lividum, found on several amphibian species, has been shown to prevent the effects of the pathogen even when added to another amphibian that lacks the bacteria ( B. dendrobatidis-susceptible amphibian species). Interactions between cutaneous microbiota and B. dendrobatidis can be altered to favor the resistance of the disease, as seen in past studies concerning the addition of the violacein-producing bacteria J. lividum to amphibians that lacked sufficient violacein, allowing them to inhibit infection. Although the exact concentration of violacein (antifungal metabolite produced by J. lividum) needed to inhibit the effects of B. dendrobatidis is not fully confirmed, violacein concentration can determine whether or not an amphibian will experience morbidity (or mortality) caused by B. dendrobatidis. The frog Rana muscosa, for example, has been found to have very low concentrations of violacein on its skin, yet the concentration is so small, it is unable to facilitate increased survivability of the frog; furthermore, J. lividum has not been found to be present on the skin of R. muscosa. This implies that the antifungal bacterium J. lividum (native to other amphibians' skin, such as Hemidactylium scutatum) is able to produce a sufficient amount of violacein to prevent infection by B. dendrobatidis and allow coexistence with the potentially deadly fungus.
One study has postulated that the water flea Daphnia magna eats the spores of the fungus.
Individuals infected with B. dendrobatidis are bathed in itraconazole solutions, and within a few weeks, previously infected individuals test negative for B. dendrobatidis using PCR assays. Heat therapy is also used to neutralize B. dendrobatidis in infected individuals. Temperature-controlled laboratory experiments are used to increase the temperature of an individual past the optimal temperature range of B. dendrobatidis. Experiments, where the temperature is increased beyond the upper bound of the B. dendrobatidis optimal range of 25 to 30 °C, show its presence will dissipate within a few weeks and infected individuals return to normal. Formalin/malachite green has also been used to successfully treat individuals infected with chytridiomycosis. An Archey's frog was successfully cured of chytridiomycosis by applying chloramphenicol topically. However, the potential risks of using antifungal drugs on individuals are high.
Bioaugmentation is also considered as a possible treatment against B. dendrobatidis. The amphibian host and even the environment can be augmented with probiotic bacteria that express anti-fungal metabolites that can fight B. dendrobatidis.
Range
Climate change
Causative agents
Disease transmission and progression
Clinical signs
Research and impact
Immunity
Interactions with pesticides
Evolution
Treatment options
See also
External links
|
|