The compact disc ( CD) is a Digital media optical disc data storage format co-developed by Philips and Sony to store and play digital audio recordings. It employs the Compact Disc Digital Audio (CD-DA) standard and is capable of holding of uncompressed stereo audio. First released in Japan in October 1982, the CD was the second optical disc format to reach the market, following the larger LaserDisc (LD). In later years, the technology was adapted for computer data storage as CD-ROM and subsequently expanded into various writable and multimedia formats. , over 200 billion CDs (including audio CDs, CD-ROMs, and ) had been sold worldwide.
Standard CDs have a diameter of and typically hold up to 74 minutes of audio or approximately of data. This was later regularly extended to 80 minutes or by reducing the spacing between data tracks, with some discs unofficially reaching up to 99 minutes or which falls outside established specifications. Smaller variants, such as the Mini CD, range from in diameter and have been used for or distributing and software.
The CD gained widespread popularity in the late 1980s and early 1990s. By 1991, it had surpassed the phonograph record and the compact cassette in sales in the United States, becoming the dominant physical audio format. By 2000, CDs accounted for 92.3% of the U.S. music market share. The CD is widely regarded as the final dominant format of the album era, before the rise of MP3, Music download, and streaming platforms in the mid-2000s led to its decline.
Beyond audio playback, the compact disc was adapted for general-purpose data storage under the CD-ROM format, which initially offered more capacity than contemporary personal computer hard disk drives. Additional derived formats include write-once discs (CD-R), rewritable media (CD-RW), and multimedia applications such as Video CD (VCD), Super Video CD (SVCD), Photo CD, Picture CD, CD-i (CD-i), Enhanced Music CD, and Super Audio CD (SACD), the latter of which can include a standard CD-DA layer for backward compatibility.
A thin layer of aluminum or, more rarely, gold is applied to the surface, making it reflective. The metal is protected by a film of lacquer normally spin coated directly on the reflective layer. The label is printed on the lacquer layer, usually by screen printing or offset printing.
]]CD data is represented as tiny indentations known as pits, encoded in a spiral track molded into the top of the polycarbonate layer. The areas between pits are known as lands. Each pit is approximately 100 Nanometre deep by 500 nm wide, and varies from 850 nm to 3.5 μm in length. The distance between the windings (the pitch) is 1.6 μm (measured center-to-center, not between the edges).
When playing an audio CD, a motor within the CD player spins the disc to a scanning velocity of 1.2–1.4 m/s (constant linear velocity, CLV)—equivalent to approximately 500 RPM at the inside of the disc, and approximately 200 RPM at the outside edge. The track on the CD begins at the inside and spirals outward so a disc played from beginning to end slows its rotation rate during playback.
The program area is 86.05 cm2 and the length of the recordable spiral is With a scanning speed of 1.2 m/s, the playing time is 74 minutes or 650 MiB of data on a CD-ROM. A disc with data packed slightly more densely is tolerated by most players (though some old ones fail). Using a linear velocity of 1.2 m/s and a narrower track pitch of 1.5 μm increases the playing time to 80 minutes, and data capacity to 700 MiB. Even denser tracks are possible, with semi-standard 90 minute/800 MiB discs having 1.33 μm, and 99 minute/870 MiB having 1.26 μm, but compatibility suffers as density increases.
A CD is read by focusing a 780 nm wavelength (near infrared) semiconductor laser (early players used HeNe laser) through the bottom of the polycarbonate layer. The change in height between pits and lands results in a difference in the way the light is reflected. Because the pits are indented into the top layer of the disc and are read through the transparent polycarbonate base, the pits form bumps when read.An Introduction to Digital Audio, John Watkinson, 1994 The laser hits the disc, casting a circle of light wider than the modulated spiral track reflecting partially from the lands and partially from the top of any bumps where they are present. As the laser passes over a pit (bump), its height means that the round trip path of the light reflected from its peak is 1/2 wavelength out of phase with the light reflected from the land around it. This is because the height of a bump is around 1/4 of the wavelength of the light used, so the light falls 1/4 out of phase before reflection and another 1/4 wavelength out of phase after reflection. This causes partial cancellation of the laser's reflection from the surface. By measuring the reflected intensity change with a photodiode, a modulated signal is read back from the disc.
To accommodate the spiral pattern of data, the laser is placed on a mobile mechanism within the disc tray of any CD player. This mechanism typically takes the form of a sled that moves along a rail. The sled can be driven by a worm gear or linear motor. Where a worm gear is used, a second shorter-throw linear motor, in the form of a coil and magnet, makes fine position adjustments to track eccentricities in the disk at high speed. Some CD drives (particularly those manufactured by Philips during the 1980s and early 1990s) use a swing arm similar to that seen on a gramophone.
The pits and lands do not directly represent the 0s and 1s of binary data. Instead, non-return-to-zero, inverted encoding is used: a change from either pit to land or land to pit indicates a 1, while no change indicates a series of 0s. There must be at least two, and no more than ten 0s between each 1, which is defined by the length of the pit. This, in turn, is decoded by reversing the eight-to-fourteen modulation used in mastering the disc, and then reversing the cross-interleaved Reed–Solomon coding, finally revealing the raw data stored on the disc. These encoding techniques (defined in the Red Book) were originally designed for CD Digital Audio, but they later became a standard for almost all CD formats (such as CD-ROM).
The data integrity of compact discs can be measured using surface error scanning, which can measure the rates of different types of data errors, known as C1, C2, CU and extended (finer-grain) error measurements known as E11, E12, E21, E22, E31 and E32, of which higher rates indicate a possibly damaged or unclean data surface, low media quality, disc rot and CD-R written to by a malfunctioning CD writer.
Error scanning can reliably predict data losses caused by media deterioration. Support of error scanning differs between vendors and models of optical disc drives, and extended error scanning (known as "advanced error scanning" in Nero DiscSpeed) which reports the six aforementioned E-type errors has only been available on Plextor and some BenQ optical drives so far, as of 2020.
The official Philips history says the capacity was specified by Sony executive Norio Ohga to be able to contain the entirety of Beethoven's Ninth Symphony on one disc. According to Philips chief engineer Kees Immink, this is a myth, as the EFM code format had not yet been decided in December 1979, when the 120 mm size was adopted. The adoption of EFM in June 1980 allowed 30 percent more playing time that would have resulted in 97 minutes for 120 mm diameter or 74 minutes for a disc as small as . Instead, the information density was lowered by 30 percent to keep the playing time at 74 minutes.Tim Buthe and Walter Mattli, The New Global Rulers: The Privatization of Regulation in the World Economy, Princeton University Press, Feb. 2011. The 120 mm diameter has been adopted by subsequent formats, including Super Audio CD, DVD, HD DVD, and Blu-ray Disc. The diameter discs ("") can hold up to 24 minutes of music or 210 MiB.
Standard size |
Mini-CD size |
Business card size |
SHM-CDs are fully compatible with all CD players since the difference in light refraction is not detected as an error. JVC claims that the greater fluidity and clarity of the material used for SHM-CDs results in a higher reading accuracy and improved sound quality. However, since the CD-Audio format contains inherent error correction, it is unclear whether a reduction in read errors would be great enough to produce an improved output.
CD-Text is an extension of the Red Book specification for an audio CD that allows for the storage of additional text information (e.g., album name, song name, artist) on a standards-compliant audio CD. The information is stored either in the lead-in area of the CD, where there are roughly five kilobytes of space available or in the subcode channels R to W on the disc, which can store about 31 megabytes.
Compact Disc + Graphics is a special audio compact disc that contains graphics data in addition to the audio data on the disc. The disc can be played on a regular audio CD player, but when played on a special CD+G player, it can output a graphics signal (typically, the CD+G player is hooked up to a television set or a computer monitor); these graphics are almost exclusively used to display lyrics on a television set for karaoke performers to sing along with. The CD+G format takes advantage of the channels R through W. These six bits store the graphics information.
CD + Extended Graphics (CD+EG, also known as CD+XG) is an improved variant of the Compact Disc + Graphics (CD+G) format. Like CD+G, CD+EG uses basic CD-ROM features to display text and video information in addition to the music being played. This extra data is stored in subcode channels R-W. Very few CD+EG discs have been published.
Titles in the SACD format can be issued as hybrid discs; these discs contain the SACD audio stream as well as a standard audio CD layer which is playable in standard CD players, thus making them backward compatible.
Overall picture quality is intended to be comparable to VHS video. Poorly compressed VCD video can sometimes be of lower quality than VHS video, but VCD exhibits block artifacts rather than analog noise and does not deteriorate further with each use. 352×240 (or SIF) resolution was chosen because it is half the vertical and half the horizontal resolution of the NTSC video. 352×288 is a similarly one-quarter PAL/SECAM resolution. This approximates the (overall) resolution of an analog VHS tape, which, although it has double the number of (vertical) scan lines, has a much lower horizontal resolution.
SVCD has two-thirds the resolution of DVD, and over 2.7 times the resolution of VCD. One CD-R disc can hold up to 60 minutes of standard-quality SVCD-format video. While no specific limit on SVCD video length is mandated by the specification, one must lower the video bit rate, and therefore quality, to accommodate very long videos. It is usually difficult to fit much more than 100 minutes of video onto one SVCD without incurring a significant quality loss, and many hardware players are unable to play a video with an instantaneous bit rate lower than 300 to 600 per second.
CD-R recordings are designed to be permanent. Over time, the dye's physical characteristics may change causing read errors and data loss until the reading device cannot recover with error correction methods. Errors can be predicted using surface error scanning. The design life is from 20 to 100 years, depending on the quality of the discs, the quality of the writing drive, and storage conditions. Testing has demonstrated such degradation of some discs in as little as 18 months under normal storage conditions. This failure is known as disc rot, for which there are several, mostly environmental, reasons.
The recordable audio CD is designed to be used in a consumer audio CD recorder. These consumer audio CD recorders use SCMS (Serial Copy Management System), an early form of digital rights management (DRM), to conform to the AHRA (Audio Home Recording Act). The Recordable Audio CD is typically somewhat more expensive than CD-R due to lower production volume and a 3 percent AHRA royalty used to compensate the music industry for the making of a copy.
High-capacity recordable CD is a higher-density recording format that can hold 20% more data than conventional discs. The higher capacity is incompatible with some recorders and recording software.
The ReWritable Audio CD is designed to be used in a consumer audio CD recorder, which will not (without modification) accept standard CD-RW discs. These consumer audio CD recorders use the Serial Copy Management System (SCMS), an early form of digital rights management (DRM), to conform to the United States' Audio Home Recording Act (AHRA). The ReWritable Audio CD is typically somewhat more expensive than CD-R due to (a) lower volume and (b) a 3 percent AHRA royalty used to compensate the music industry for the making of a copy.
|
|