Fiberglass (American English) or fibreglass (Commonwealth English) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.
Cheaper and more flexible than carbon fiber, it is stronger than many metals by weight, non-magnetic, non-conductive, transparent to electromagnetic radiation, can be molded into complex shapes, and is chemically inert under many circumstances. Applications include aircraft, boats, automobiles, bath tubs and enclosures, swimming pools, , , , roofing, pipes, cladding, , , and external door skins.
Other common names for fiberglass are glass-reinforced plastic ( GRP), glass-fiber reinforced plastic ( GFRP) or GFK (from ). Because glass fiber itself is sometimes referred to as "fiberglass", the composite is also called fiberglass-reinforced plastic ( FRP). This article uses "fiberglass" to refer to the complete fiber-reinforced composite material, rather than only to the glass fiber within it.
Mass production of glass strands was Serendipity in 1932 when Games Slayter, a researcher at Owens-Illinois, directed a jet of compressed air at a stream of molten glass and produced fibers. A patent for this method of producing glass wool was first applied for in 1933.Slayter, Games (11 November 1933). "Method & Apparatus for Making Glass Wool". . Owens joined with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented "Fiberglas" (spelled with one "s") in 1936. Originally, Fiberglas was a glass wool with fibers entrapping a great deal of gas, making it useful as an insulator, especially at high temperatures.
A suitable resin for combining the fiberglass with a plastic to produce a composite material was developed in 1936 by DuPont. The first ancestor of modern polyester resins is Cyanamid's resin of 1942. Peroxide curing systems were used by then. With the combination of fiberglass and resin the gas content of the material was replaced by plastic. This reduced the insulation properties to values typical of the plastic, but now for the first time, the composite showed great strength and promise as a structural and building material. Many glass fiber composites continued to be called "fiberglass" (as a generic name) and the name was also used for the low-density glass wool product containing gas instead of plastic.
Ray Greene of Owens Corning is credited with producing the first composite boat in 1937 but did not proceed further at the time because of the brittle nature of the plastic used. In 1939 the Soviet Union was reported to have constructed a passenger boat of plastic materials, and the United States a fuselage and wings of an aircraft."Notable Progress – the use of plastics", Evening Post, Wellington, New Zealand, Volume CXXVIII, Issue 31, 5 August 1939, p. 28 The first car to have a fiberglass body was a 1946 prototype of the Stout Scarab, but the model did not enter production.
These filaments are then sized (coated) with a chemical solution. The individual filaments are now bundled in large numbers to provide a roving. The diameter of the filaments, and the number of filaments in the roving, determine its weight, typically expressed in one of two measurement systems:
These rovings are then either used directly in a composite application such as pultrusion, filament winding (pipe), gun roving (where an automated gun chops the glass into short lengths and drops it into a jet of resin, projected onto the surface of a mold), or in an intermediary step, to manufacture fabrics such as chopped strand mat (CSM) (made of randomly oriented small cut lengths of fiber all bonded together), woven fabrics, knit fabrics or unidirectional fabrics.
Furthermore, by laying multiple layers of fiber on top of one another, with each layer oriented in various preferred directions, the material's overall stiffness and strength can be efficiently controlled. In fiberglass, it is the plastic matrix which permanently constrains the structural glass fibers to directions chosen by the designer. With chopped strand mat, this directionality is essentially an entire two-dimensional plane; with woven fabrics or unidirectional layers, directionality of stiffness and strength can be more precisely controlled within the plane.
A fiberglass component is typically of a thin "shell" construction, sometimes filled on the inside with structural foam, as in the case of surfboards. The component may be of nearly arbitrary shape, limited only by the complexity and tolerances of the mold used for manufacturing the shell.
The mechanical functionality of materials is heavily reliant on the combined performances of both the resin (AKA matrix) and fibers. For example, in severe temperature conditions (over 180 °C), the resin component of the composite may lose its functionality, partially due to bond deterioration of resin and fiber. However, GFRPs can still show significant residual strength after experiencing high temperatures (200 °C).
One notable feature of fiberglass is that the resins used are subject to contraction during the curing process. For polyester this contraction is often 5–6%; for epoxy, about 2%. Because the fibers do not contract, this differential can create changes in the shape of the part during curing. Distortions can appear hours, days, or weeks after the resin has set. While this distortion can be minimized by symmetric use of the fibers in the design, a certain amount of internal stress is created; and if it becomes too great, cracks form.
Pure silica (silicon dioxide), when cooled as fused quartz into a glass with no true melting point, can be used as a glass fiber for fiberglass but has the drawback that it must be worked at very high temperatures. In order to lower the necessary work temperature, other materials are introduced as "fluxing agents" (i.e., components to lower the melting point). Ordinary A-glass ("A" for "alkali-lime") or soda lime glass, crushed and ready to be remelted, as so-called cullet glass, was the first type of glass used for fiberglass. E-glass ("E" because of initial Electrical application), is alkali-free and was the first glass formulation used for continuous filament formation. It now makes up most of the fiberglass production in the world, and also is the single largest consumer of boron minerals globally. It is susceptible to chloride ion attack and is a poor choice for marine applications. S-glass ("S" for "stiff") is used when tensile strength (high modulus) is important and is thus an important building and aircraft epoxy composite (it is called R-glass, "R" for "reinforcement" in Europe). C-glass ("C" for "chemical resistance") and T-glass ("T" is for "thermal insulator"—a North American variant of C-glass) are resistant to chemical attack; both are often found in insulation-grades of blown fiberglass.
During World War II, fiberglass was developed as a replacement for the molded plywood used in aircraft (fiberglass being transparent to microwaves). Its first main civilian application was for the building of and sports car bodies, where it gained acceptance in the 1950s. Its use has broadened to the automotive and sport equipment sectors. In the production of some products, such as aircraft, carbon fiber is now used instead of fiberglass, which is stronger by volume and weight.
Advanced manufacturing techniques such as and fiber extend fiberglass's applications and the tensile strength possible with fiber-reinforced plastics.
Fiberglass is also used in the telecommunications industry for antennas, due to its radio frequency permeability and low signal attenuation properties. It may also be used to conceal other equipment where no signal permeability is required, such as equipment cabinets and steel support structures, due to the ease with which it can be molded and painted to blend with existing structures and surfaces. Other uses include sheet-form electrical insulators and structural components commonly found in power-industry products. Because of fiberglass's lightweight and durability, it is often used in protective equipment such as helmets. Many sports use fiberglass protective gear, such as goaltenders' and catchers' masks.
Fiberglass rods must be kept in tension, however, as they frequently part if placed in even a small amount of compression. The buoyancy of the rods within a fluid amplifies this tendency.
Filament winding is well suited to automation, and there are many applications, such as pipe and small pressure vessels that are wound and cured without any human intervention. The controlled variables for winding are fiber type, resin content, wind angle, tow or bandwidth and thickness of the fiber bundle. The angle at which the fiber has an effect on the properties of the final product. A high angle "hoop" will provide circumferential or "burst" strength, while lower angle patterns (polar or helical) will provide greater longitudinal tensile strength.
Products currently being produced using this technique range from pipes, golf clubs, Reverse Osmosis Membrane Housings, oars, bicycle forks, bicycle rims, power and transmission poles, pressure vessels to missile casings, aircraft fuselages and lamp posts and yacht masts.
As of 2001, in humans only the more biopersistent materials like ceramic fibres, which are used industrially as insulation in high-temperature environments such as , and certain special-purpose glass wools not used as insulating materials remain classified as possible carcinogens (IARC Group 2B). The more commonly used glass fibre wools including insulation glass wool, rock wool and slag wool are considered not classifiable as to carcinogenicity to humans (IARC Group 3). In October 2001, all fiberglass wools commonly used for thermal and acoustical insulation were reclassified by the International Agency for Research on Cancer (IARC) as "not classifiable as to carcinogenicity to humans" (IARC group 3). "Epidemiologic studies published during the 15 years since the previous IARC monographs review of these fibers in 1988 provide no evidence of increased risks of lung cancer or mesothelioma (cancer of the lining of the body cavities) from occupational exposures during the manufacture of these materials, and inadequate evidence overall of any cancer risk." In June 2011, the US National Toxicology Program (NTP) removed from its Report on all biosoluble glass wool used in home and building insulation and for non-insulation products. However, NTP still considers fibrous glass dust to be "reasonably anticipated as a human carcinogen (Certain Glass Wool Fibers (Inhalable))". Similarly, California's Office of Environmental Health Hazard Assessment (OEHHA) published a November, 2011 modification to its Proposition 65 listing to include only "Glass wool fibers (inhalable and biopersistent)."46-Z California Regulatory Notice Register, P.1878 (November 18, 2011). Therefore a cancer warning label for biosoluble fiber glass home and building insulation is no longer required under federal or California law. As of 2012, the North American Insulation Manufacturers Association stated that fiberglass is safe to manufacture, install and use when recommended work practices are followed to reduce temporary mechanical irritation.
As of 2012, the European Union and Germany have classified synthetic glass fibers as possibly or probably carcinogenic, but fibers can be exempt from this classification if they pass specific tests. A 2012 health hazard review for the European Commission stated that inhalation of fiberglass at concentrations of 3, 16 and 30 mg/m3 "did not induce fibrosis nor tumours except transient lung inflammation that disappeared after a post-exposure recovery period." Historic reviews of the epidemiology studies had been conducted by Harvard's Medical and Public Health Schools in 1995, the National Academy of Sciences in 2000,NRC Subcommittee on Manufactured Vitreous Fibers. 2000. Review of the U.S. Navy's Exposure Standard for Manufactured Vitreous Fibers. National Academy of Sciences, National Research Council, Washington, D.C.: National Academy Press. the Agency for Toxic Substances and Disease Registry ("ATSDR") in 2004, and the National Toxicology Program in 2011.Charles William Jameson, "Comments on the National Toxicology Program's Actions In Removing Biosoluble Glass Wool Fibers From The Report On Carcinogens," September 9, 2011. which reached the same conclusion as IARC that there is no evidence of increased risk from occupational exposure to glass wool fibers.
As of 2001, the Hazardous Substances Ordinance in Germany dictates a maximum occupational exposure limit of 86 mg/m3. In certain concentrations, a potentially explosive mixture may occur. Further manufacture of GRP components (grinding, cutting, sawing) creates fine dust and chips containing glass filaments, as well as tacky dust, in quantities high enough to affect health and the functionality of machines and equipment. The installation of effective extraction and filtration equipment is required to ensure safety and efficiency.
See also
External links
|
|