Brain-reading or thought identification uses the responses of multiple in the brain evoked by stimulus then detected by fMRI in order to decode the original stimulus. Advances in research have made this possible by using Neuroimaging to decode a person's conscious experience based on non-invasive measurements of an individual's brain activity. Brain reading studies differ in the type of decoding (i.e. classification, identification and reconstruction) employed, the target (i.e. decoding visual patterns, auditory patterns, ), and the decoding algorithms (linear classification, nonlinear classification, direct reconstruction, Bayesian reconstruction, etc.) employed.
Experimentally the procedure is for subjects to view 1750 black and white natural images that are correlated with voxel activation in their brains. Then subjects viewed another 120 novel target images, and information from the earlier scans is used reconstruct them. Natural images used include pictures of a seaside cafe and harbor, performers on a stage, and dense foliage.
In 2008 IBM applied for a patent on how to extract mental images of human faces from the human brain. It uses a feedback loop based on brain measurements of the fusiform gyrus area in the brain which activates proportionate with degree of facial recognition.
In 2011, a team led by Shinji Nishimoto used only brain recordings to partially reconstruct what volunteers were seeing. The researchers applied a new model, about how moving object information is processed in human brains, while volunteers watched clips from several videos. An algorithm searched through thousands of hours of external YouTube video footage (none of the videos were the same as the ones the volunteers watched) to select the clips that were most similar. The authors have uploaded demos comparing the watched and the computer-estimated videos.Nishimoto et al. 2011 uploaded video 1 Movie reconstruction from human brain activity on YoutubeNishimoto et al. 2011 uploaded video 2 Movie reconstructions from human brain activity: 3 subjects, "Nishimoto.etal.2011.3Subjects.mpeg" on Youtube
In 2017 a face perception study in monkeys reported the reconstruction of human faces by analyzing electrical activity from 205 neurons.
In 2023 image reconstruction was reported utilizing Stable Diffusion on human brain activity obtained via fMRI.
In 2024, a study demonstrated that images imagined in the mind, without visual stimulation, can be reconstructed from fMRI brain signals utilizing machine learning and generative AI technology. Another 2024 study reported the reconstruction of images from EEG.
A number of concerns have been raised about the accuracy and ethical implications of brain-reading for this purpose. Laboratory studies have found rates of accuracy of up to 85%; however, there are concerns about what this means for false positive results: "If the prevalence of "prevaricators" in the group being examined is low, the test will yield far more false-positive than true-positive results; about one person in five will be incorrectly identified by the test." Ethical problems involved in the use of brain-reading as lie detection include misapplications due to adoption of the technology before its reliability and validity can be properly assessed and due to misunderstanding of the technology, and privacy concerns due to unprecedented access to individual's private thoughts. However, it has been noted that the use of polygraph lie detection carries similar concerns about the reliability of the results and violation of privacy.
Emotiv Systems, an Australian electronics company, has demonstrated a headset that can be trained to recognize a user's thought patterns for different commands. Tan Le demonstrated the headset's ability to manipulate virtual objects on screen, and discussed various future applications for such brain-computer interface devices, from powering wheel chairs to replacing the mouse and keyboard.
When humans think of an object, such as a screwdriver, many different areas of the brain activate. Marcel Just and his colleague, Tom Mitchell, have used fMRI brain scans to teach a computer to identify the various parts of the brain associated with specific thoughts. This technology also yielded a discovery: similar thoughts in different human brains are surprisingly similar neurologically. To illustrate this, Just and Mitchell used their computer to predict, based on nothing but fMRI data, which of several images a volunteer was thinking about. The computer was 100% accurate, but so far the machine is only distinguishing between 10 images.
16 December 2015, a study conducted by Toshimasa Yamazaki at Kyushu Institute of Technology found that during a rock-paper-scissors game a computer was able to determine the choice made by the subjects before they moved their hand. An EEG was used to measure activity in the Broca's area to see the words two seconds before the words were uttered.
In 2023, the University of Texas in Austin trained a non-invasive brain decoder to translate volunteers' brainwaves into the GPT-1 language model. After lengthy training on each individual volunteer, the decoder usually failed to reconstruct the exact words, but could nevertheless reconstruct meanings close enough that the decoder could, most of the time, identify what timestamp of a given book the subject was listening to.
On 31 January 2012 Brian Pasley and colleagues of University of California Berkeley published their paper in PLoS Biology wherein subjects' internal neural processing of auditory information was decoded and reconstructed as sound on computer by gathering and analyzing electrical signals directly from subjects' brains. The research team conducted their studies on the superior temporal gyrus, a region of the brain that is involved in higher order neural processing to make semantic sense from auditory information. The research team used a computer model to analyze various parts of the brain that might be involved in neural firing while processing auditory signals. Using the computational model, scientists were able to identify the brain activity involved in processing auditory information when subjects were presented with recording of individual words. Later, the computer model of auditory information processing was used to reconstruct some of the words back into sound based on the neural processing of the subjects. However the reconstructed sounds were not of good quality and could be recognized only when the audio wave patterns of the reconstructed sound were visually matched with the audio wave patterns of the original sound that was presented to the subjects. However this research marks a direction towards more precise identification of neural activity in cognition.
John Dylan-Haynes has also demonstrated that fMRI can be used to identify whether a volunteer is about to add or subtract two numbers in their head.
John-Dylan Haynes states that fMRI can also be used to identify recognition in the brain. He provides the example of a criminal being interrogated about whether he recognizes the scene of the crime or murder weapons.
In other countries outside the United States, thought identification has already been used in criminal law. In 2008 an Indian woman was convicted of murder after an EEG of her brain allegedly revealed that she was familiar with the circumstances surrounding the poisoning of her ex-fiancé. Some neuroscientists and legal scholars doubt the validity of using thought identification as a whole for anything past research on the nature of deception and the brain.
The Economist cautioned people to be "afraid" of the future impact, and some ethicists argue that privacy laws should protect private thoughts. Legal scholar Henry Greely argues that the court systems could benefit from such technology, and neuroethicist Julian Savulescu states that brain data is not fundamentally different from other types of evidence. In Nature, journalist Liam Drew writes about emerging projects to attach brain-reading devices to speech synthesizers or other output devices for the benefit of tetraplegia. Such devices could create concerns of accidentally broadcasting the patient's "inner thoughts" rather than merely conscious speech.
The fMRI has allowed research to expand by significant amounts because it can track the activity in an individual's brain by measuring the brain's blood flow. It is currently thought to be the best method for measuring brain activity, which is why it has been used in multiple research experiments in order to improve the understanding of how doctors and psychologists can identify thoughts.
In a 2020 study, AI using implanted electrodes could correctly transcribe a sentence read aloud from a fifty-sentence test set 97% of the time, given 40 minutes of training data per participant.
Professor of neuropsychology Barbara Sahakian qualified, "A lot of neuroscientists in the field are very cautious and say we can't talk about reading individuals' minds, and right now that is very true, but we're moving ahead so rapidly, it's not going to be that long before we will be able to tell whether someone's making up a story, or whether someone intended to do a crime with a certain degree of certainty."
Frederic Gilbert and Ingrid Russo assert that the field of BCI/BMI related brain reading has significant levels of "hype", similar to the field of artificial intelligence.
Donald Marks, founder and chief science officer of MMT, is working on playing back thoughts individuals have after they have already been recorded.
Researchers at the University of California Berkeley have already been successful in forming, erasing, and reactivating memories in rats. Marks says they are working on applying the same techniques to humans. This discovery could be monumental for war veterans who suffer from PTSD.
Further research is also being done in analyzing brain activity during video games to detect criminals, neuromarketing, and using brain scans in government security checks.
In the movie ''Dumb and Dumber To', one scene shows a brain reader.
In the Henry Danger episode, "Dream Busters," a machine shows Henry's dream.
Detecting thoughts
Detecting language
Predicting intentions
Predictive processing in the brain
Virtual environments
Emotions
Security
Methods of analysis
Classification
Reconstruction
EEG
Accuracy
Limitations
Ethical issues
History
Future research
In popular culture
See also
External links
|
|