Aetosaurs () are heavily armored reptiles belonging to the extinct order Aetosauria (; from Ancient Greek, ἀετός]] (aetos, "eagle") and σαυρος]] (sauros, "lizard")). They were medium- to large-sized Omnivore or Herbivore , part of the branch of more closely related to than to and non-avian . All known aetosaurs are restricted to the Late Triassic, and in some strata from this time they are among the most abundant fossil . They have small heads, upturned snouts, erect limbs, and a body ornamented with four rows of plate-like (bony ). Aetosaur fossil remains are known from Europe, North America and South America, parts of Africa, and India. Since their armoured plates are often preserved and are abundant in certain localities, aetosaurs serve as important Late Triassic tetrapod . Many aetosaurs had wide geographic ranges, but their Stratigraphy ranges were relatively short. Therefore, the presence of particular aetosaurs can accurately date a site in which they are found.
Nearly all aetosaurs (except for the genus Aetosauroides) belong to the family Stagonolepididae. Over 20 genera of aetosaurs have been described, and recently there has been controversy regarding the description of some of these genera. Two distinct subdivisions of aetosaurs are currently recognized, Desmatosuchia and Aetosaurinae, based primarily on broad differences in skull morphology. Osteoderms structure is generally one of the most useful traits for inferring aetosaur relations more precisely. Among other archosaurs, aetosaurs are most closely related to Revueltosaurus, a small reptile originally known from teeth mistakenly referred to herbivorous dinosaurs.
Aetosaur remains were first discovered in the early 19th century, although the first remains that were described were mistaken for fish scales. Aetosaurs were later recognized as crocodile relatives, at which point they were interpreted as semiaquatic scavengers closely related to . Subsequent work has established that aetosaurs were entirely terrestrial animals, and were likely herbivorous to some extent. Some forms have characteristics that may have been adaptations to digging for food. Supposed nesting structures have also been referred to aetosaurs, but this connection is considered ambiguous.
In some aetosaurs (particular members of the group Desmatosuchia), the tip of the snout is expanded sideways into a flattened 'shovel' shape, akin to the snout of a pig. The Nares (nostril holes) are elongated, much larger than the antorbital fenestrae (a hole on the side of the skull). Many aetosaurs have a small knob on the premaxilla which projects into the nares from below. In all aetosaurs except Aetosauroides, the rear edge of the naris receives a contribution from the concave front edge of the Maxilla. At the rear upper part of the skull, a hole known as the supratemporal fenestra is positioned and exposed on the side, unlike most other archosaurs where it is mostly visible when viewing the skull from above. The braincase is fairly standard by pseudosuchian standards, though the opening for the Abducens nerve passes through the Parabasisphenoid (at the lower front part of the braincase), rather than the Prootic (at the upper front part). This trait is otherwise only seen in Revueltosaurus and crocodylomorpha among archosaurs.Archosaurian Anatomy and Palaeontology: Essays in Memory of Alick D. Walker, DB Norman & DJ Gower (eds.) The mandible (lower jaw) is described as 'slipper'-shaped in many aetosaurs. This is due to a combination of features: the front of the dentary strongly tapers to a point, while the underside of the dentary sometimes flexes into a 'chin' (downwards projection) which may expose the Splenial as well. The jaw joint is set at a low position, and the Articular bone (the bone of the lower jaw which connects to the cranium) often has a tall projection right behind the jaw joint.
Although aetosaurs were generally wide-bodied reptiles, there is some variation in the degree of this trend. The Typothoracinae, exemplified by Typothorax and Paratypothorax, had a very broad, disc-shaped carapace, edged by small spines or keels and transitioning to a narrow tail. The largest species of typothoracines may have been around 3 meters (9.8 feet) in length and 110 kg (243 lbs) in weight. The Desmatosuchini (Desmatosuchinae sensu stricto), such as Desmatosuchus and Longosuchus, had moderately narrower bodies and no belly armor. However, they also acquired spinier back armor, especially in the cervical (neck) region. Desmatosuchus was likely one of the largest known aetosaurs, at in length and in weight.von Baczko, M. B., Desojo, J. B., Gower, D. J., Ridgely, R., Bona, P., &
Witmer, L. M. (2021).
Aetosaurs have four rows of osteoderms running along their dorsal (back) side, forming a continuous plate often called the carapace. The inner two rows, which flank the midline of the spinal column, are known as paramedian osteoderms. These tend to be wider than long and strongly ornamented with radiating pits or grooves. Nearly all aetosaurs possess a small boss or raised surface, known as a dorsal eminence, on the upper surface of each plate. The dorsal eminence is often set posteriorly (backwards) or medially (inwards) on their respective paramedian osteoderm, though there are many exceptions within the group. The paramedian osteoderms almost always have raised or depressed anterior edges, where the plates are overlapped by the ones in front of them. If the anterior edge is raised, the area is called an anterior bar, while if it is depressed, the area is called an anterior lamina. Although two paramedian osteoderm rows are common in early archosauriforms, few reptiles approach aetosaurs in the complexity of their osteoderms. The osteoderms of Doswelliidae, Erpetosuchidae, and certain Crocodylomorpha are occasionally confused or compared with those of aetosaurs. Both an anterior bar and dorsal eminence occur in Acaenasuchus, a close relative of aetosaurs originally misidentified as a juvenile desmatosuchine.
The outer two rows of osteoderms, which lie beside the paramedians, are known as lateral osteoderms. They parallel the paramedians over nearly the entire backside, though the first two paramedians behind the head (known as nuchal osteoderms) are solitary. Lateral plates generally are separated into two surfaces, or flanges, flexed between their dorsal eminence. The upper, or dorsal flange lies in the same plane as the paramedian osteoderms. The lower/outer, or lateral flange wraps down onto the side of the body. The dorsal eminence between these flanges often has the form of a low blade, knob, or spike. In the cervical lateral osteoderms, which are positioned on the neck, the dorsal eminence tends to manifest as a prominent spike.Bill Parker (12 August 2009). " Aetosaurs 101: Osteoderm Nomenclature." Chinleana. Accessed 8 January 2010. This is taken to an extreme in desmatosuchines such as Longosuchus and Desmatosuchus, where the spike is enlarged into a sharply curved horn.
In most aetosaurs (a major exception being Desmatosuchini), the underside of the animal is also protected by osteoderms. These ventral (belly) osteoderms are generally smaller and flatter than the dorsal series, and are arranged into a larger number of rows (usually 5 - 14 rows), at least in the torso. Ventral osteoderms rows usually curve outwards and separate under the hip, leaving a wide gap for the opening. Large, hooked spines occur around this opening in Typothorax, one of the few exceptions to a general rule of smooth ventral osteoderms. Ventral rows break up into a shagreen of small plates on the neck, and a small number of wide rows under the tail. A dense assortment of small, non-overlapping plates, known as appendicular osteoderms, covered the front and hindlimbs.
English people biologist Thomas Henry Huxley reconsidered the fish scales described by Agassiz and considered them to belong to a crocodilian. He first proposed this to the Geological Society of London in 1858, and went into more detail in an 1875 paper in the society's quarterly journal. By this time, new material had been uncovered from Elgin that indicated that Stagonolepis was not a fish, but a reptile. However, Stagonolepis was still known primarily by scutes and imprints of scutes, many of which were not well preserved.
More complete aetosaur remains were found from the Lower Stubensandtein of Germany in the 1870s. Among them were complete articulated skeletons of 22 aetosaurs. These specimens were found in a large sandstone outcrop near Stuttgart and were preserved together in an area less than 2 square metres otherin size. The animals were probably buried under lake sediment soon after they died, with the flow of water repositioning their bodies on the lake bed and putting them in close proximity to one another. In 1877, German paleontologist Oscar Fraas assigned these specimens to the newly erected genus Aetosaurus. Fraas named the genus after the skull's resemblance to the head of an eagle, with a narrow, elongate skull and a pointed snout.
A third North American genus called Stegomus was named by Othniel Charles Marsh in 1896. Marsh had a long-time rivalry with Cope that was made famous in the Bone Wars of the late 19th century, in which the two tried to out-compete one another in the field and in scientific literature. Unlike Cope's aetosaurs, Stegomus was found from the eastern United States in Connecticut. Marsh also recognized Stegomus as an aetosaur rather than a phytosaur in his initial description of the genus. Like Cope, many paleontologists tended to consider aetosaur scutes to belong to phytosaurs during this time period. Marsh considered aetosaurs to be closely related to dinosaurs based on their elongated Metatarsal bones (foot bones).
As a distinct group, Aetosauria was named in 1889 by English naturalist Richard Lydekker and zoologist Henry Alleyne Nicholson. They considered Aetosauria to be one of three of the order Crocodilia, the other two being Parasuchia (a group including phytosaurs and other Triassic forms) and Eusuchia (a group including all post-Triassic crocodylomorphs). Nicholson and Lydekker placed a single family within the suborder, Aëtosauridæ. They considered aetosaurs to be similar to living crocodilians despite their longer metatarsals.
Ichnite and .]]Aetosaurs are also found in areas corresponding to Gondwana (southern Pangaea), though they are considerably less common or diverse than in Northern continents. South American aetosaurs are known from Argentina, Brazil, and Chile. In Argentina, Aetosauroides and Neoaetosauroides hail from the Carnian Ischigualasto Formation and Norian Los Colorados Formation, respectively. In Brazil, fossils have been found in the Santa Maria and Caturrita Formations in Rio Grande do Sul (Paleorrota). Chilean aetosaurs are represented by one fragmentary genus, Chilenosuchus , from the Antofagasta Region. Aetosaurs have also been found in India, which, along with South America, was part of Gondwana during the Late Triassic. Early accounts of Indian aetosaurs were based on material from the Maleri Formation in south-central India, although most of these remains were too inadequate to assign specimens to any particular genus. Based on published descriptions, the Indian aetosaur fossils most closely resemble Longosuchus and Paratypothorax, which are considerably more specialized than most described Gondwanan aetosaurs. In 2023 a new aetosaur was named from the Lower Dharmaram Formation of India as Venkatasuchus'', a Typothoracinae aetosaur. Reports of aetosaurs from Madagascar are based on probable crocodylomorpha scutes. Supposed aetosaurian footprints and skeletal material from South Africa are also unsubstantiated.
Ichnite belonging to the ichnogenus Brachychirotherium are often associated with aetosaurs. Brachychirotherium are known from Rio Grande do Sul in Paleorrota, Brazil as well as Italy, Germany, the eastern United States, and many other aetosaur-bearing locales. They are also common in the southwestern United States, having been found in Canyonlands National Park and Dinosaur National Monument. Many of these tracks have a narrow gauge (meaning the left and right prints are placed closely together) and nearly overstep each other. A 2011 functional analysis of the skeleton of Typothorax indicated that it had the range of movement necessary to produce the tracks.
Originally, all aetosaurs were considered members of the family Stagonolepididae. Early phylogenetics split aetosaurs into two subfamilies, Aetosaurinae and Desmatosuchinae. Aetosaurines are characterized by projections called eminences on the dorsal paramedian osteoderms that are close to the midline of the back. Desmatosuchines have a few more distinguishing characteristics, including grooves on the dorsal paramedians that help them lock to the lateral plates in a tight articulation. Many desmatosuchines have long spikes projecting from the lateral plates. These spikes are especially prominent in Desmatosuchus. Aetosaurines, on the other hand, tend to have less spikes. Many aetosaurines, such as Aetosaurus and Neoaetosauroides, have smooth carapaces and lack spikes altogether. More recent studies (see below) have favored a third group, Typothoracinae, which like Desmatosuchinae has long spikes, but differs in having more sharply angled joints between osteoderms. Moreover, the genus Aetosauroides is now often classified outside Stagonolepididae as a non-stagonolepidid aetosaur, making the names Aetosauria and Stagonolepididae no longer synonymous.
El Bordo Formation
Aetosaur phylogeny was first investigated in 1994 by paleontologist J. Michael Parrish. Aetosauroides, Aetosaurus, Desmatosuchus, Longosuchus, Neoaetosauroides, Stagonolepis, and Typothorax were included in the phylogenetic analysis. Aetosaurs were found to form a clade with rauisuchians, which Parrish termed Rauisuchiformes. Rauisuchiformes also included the superorder Crocodylomorpha, to which living belong. Parrish found Aetosauria to be a monophyletic group and thus a true clade consisting of a common aetosaur ancestor and all of its descendants. To phylogenetically define Aetosauria, Parrish identified five synapomorphies, or shared characteristics. The first synapomorphy concerned the jaw, with the premaxilla at its tip being edentulous (toothless), upturned, and wide to form a "shovel". Moreover, the dentary bone in the lower jaw is also toothless, upturned, and broad. The reduced size and simple conical shape of the teeth was considered another synapomorphy. Two more synapomorphies of aetosaurs are shared with crocodylomorphs, but were not considered to be an indication of a close phylogenetic relationship; the body is covered in dorsal and ventral armor to form a complete carapace, and the paramedian osteoderms are much wider than they are long, with distinctive pitting. A final synapomorphy was found in the structure of the limb bones. In all aetosaurs, the limbs are very robust, with large muscle attachments such as the deltopectoral crest of the humerus, the fourth trochanter of the femur, the intracondylar ridge of the tibia, and the iliofibularis trochanter of the fibula.
In Parrish's phylogenetic analysis, Aetosaurus was found to be the most basal member of the clade, the earliest to diverge after the most recent common ancestor. After Aetosaurus, there is a polytomy of three smaller clades in which it is unknown which clade diverged first from the group. Within this polytomy there was Neoaetosauroides, a clade containing Aetosauroides and Stagonolepis, and another polytomy that included Longosuchus, Desmatosuchus, and a clade containing Paratypothorax and Typothorax.
A later study by paleontologists Andrew B. Heckert and Spencer G. Lucas in 1999 expanded the number of synapomorphies that diagnose Aetosauria to 18. New synapomorphies included temporal fenestrae, or holes, that opened on the side of the skull rather than the top, lateral osteoderms articulating with the paramedians, and osteoderms covering the limbs. Aetosaurus was still found to be the most basal member, but the phylogeny of more Synapomorphy aetosaurs differed in that Typothorax and Paratypothorax were split into two different clades with their sister taxa being Desmatosuchus and Longosuchus, respectively. More importantly, a new aetosaur called Coahomasuchus was included in the analysis. Coahomasuchus was found to be a basal aetosaur closely related to Stagonolepis, and also appeared early in the fossil record of aetosaurs. Previously, basal members were only known from later times, occurring after more advanced aetosaurs.
In 2003, paleontologists Simon R. Harris, David J. Gower, and Mark Wilkinson examined previous phylogenetic studies of aetosaurs and criticized the way in which they used certain characters to produce cladograms. They concluded that only three hypotheses of aetosaur relationships from previous studies were still true: that Aetosaurus is the most basal aetosaur, that Aetosauroides is the sister taxon of Stagonolepis robertsoni, and that Longosuchus and Desmatosuchus are more closely related to each other than either is to Neoaetosauroides. They also went on to correct the trees from all previous analyses.
More recently, a 2007 analysis by paleontologist William G. Parker resulted in a larger tree of aetosaur phylogenetics with the inclusion of Heliocanthus. Based on the tree, Parker defined the clades Typothoracisinae and Paratypothoracisini, both within Aetosaurinae. Parker also gave a revised phylogenetic definition of Aetosauria, mentioning that the previous definition, made by Heckert and Lucas in 2000, was somewhat ambiguous. Heckert & Lucas (2000) defined Aetosauria as a stem-based taxon, claiming that Aetosauria included all crurotarsans that were more closely related to Desmatosuchus than to the immediate sister group of Aetosauria. Because the immediate sister group of Aetosauria was uncertain, Parker offered a new definition with several non-aetosaur crurotarsan genera rather than one sister group. According to Parker, Aetosauria included all taxa more closely related to Aetosaurus and Desmatosuchus than to Leptosuchus, Postosuchus, Prestosuchus, Poposaurus, Sphenosuchus, Alligator, Gracilisuchus, and Revueltosaurus.
A new genus of aetosaur, Aetobarbakinoides, was named in 2012. The phylogenetic analysis in that study found Aetosaurinae to be a paraphyletic grouping. As a paraphyletic group, aetosaurines would share a most recent common ancestor that is also the ancestor of other non-aetosaurine aetosaurs, and thus could not form their own clade. Parker's 2007 analysis accepted this definition. In 2002, Heckert and Lucas defined Aetosaurinae as "a stem-based taxon containing all taxa more closely related to Aetosaurus than to the last common ancestor of Aetosaurus and Desmatosuchus". The 2012 study placed Aetosaurus at the base of the stagonolepidid clade, with traditional aetosaurine taxa placed in successively more Synapomorphy positions. In the analysis, these taxa are actually more closely related to Desmatosuchus than to Aetosaurus. Thus, under Heckert and Lucas's definition Aetosaurinae might be restricted to only Aetosaurus itself.
Another finding of this study was that Aetosauroides lies outside Stagonolepididae. If this phylogeny is correct, Stagonolepididae and Aetosauria would not be equivalent groupings, and Aetosauroides would be the first non-stagonolepidid aetosaur. The following cladogram simplified after an analysis presented by Devin K. Hoffman, Andrew B. Heckert, and Lindsay E. Zanno.
In 2016, William Parker conducted a new phylogenetic analysis of the Aetosauria, proposing an alternative hypothesis of aetosaur relationships. Below is the cladogram:
In 2012 another "stem aetosaur" was described from the Middle Triassic Manda Beds of Tanzania. It differs from other Middle Triassic pseudosuchians in having a long skull, a small antorbital fenestra that fits into a large antorbital fossa in front of the eye socket, sharp and curved teeth, and osteoderms covering much of its body. Like aetosaurs and Revueltosaurus, it has a maxilla that fits into the jugal. Revueltosaurus, Turfanosuchus, and the unnamed Tanzanian pseudosuchian are all good fits for the hypothesized ancestor of aetosaurs because they both have double rows of leaf-shaped osteoderms along their backs that could potentially have evolved into the tightly fitting paramedian osteoderms of aetosaurs.
While features of the limbs indicate that aetosaurs probably dug for food, features of the skull and teeth can indicate what kind of food they were eating. Aetosaurs have many derived features not seen in other crurotarsans, which indicate that they are adapted to a different diet. Unlike the sharp, recurved teeth of other triassic archosaurs, aetosaurs had simple, conical teeth. The tips of the jaws were edentulism, or toothless, and probably supported a beak. The teeth have very little wear, suggesting that aetosaurs did not consume stiff and tough plant material. It is more likely that they consumed non-abrasive vegetation such as soft leaves.
Alternative theories have been proposed for the diet of aetosaurs. In 1947, H J Sawin proposed that the aetosaur Longosuchus was a scavenger based on the close proximity of some specimens to a large number of skeletons that were likely carcasses. A 2009 study of the jaw biomechanics of the South American genus Neoaetosauroides suggested that the animal may have fed on larvae and insects without hard exoskeletons. This is because Neoaetosauroides lacks serrations or wear facets on the teeth and has a jaw leverage that is not designed for strong forces such as crushing and chopping. The study recognized that northern aetosaurs such as Desmatosuchus and Stagonolepis did have jaws that would have supported a strong musculature, and were likely better suited to eating plant material.
In 1996, geologist Stephen Hasiotis discovered 220‑million-year-old, fossilized, bowl-like pits in Arizona's Petrified Forest, in part of the Chinle Formation, assumed to be aetosaur and phytosaur nests. The "nests" are compacted and appear very similar to the nests of the modern day who guard their nests. However, it seems that these "nests" are instead the result of sandstone weathering.Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and Their Kin
Capa
Sterling J. Nesbitt, Julia Brenda Desojo, Randall B. Irmis
Geological Society of London, 2013 - 608 páginas
A second possible aetosaur nest site is known from northeastern Italy. The nests are preserved as depressions in carbonate rock that are circular or horseshoe-shaped, with high ridges around the sides. They appear to be unusually complex for nests created by Triassic reptiles. Archosaur footprints were found nearby that resembled aetosaurs, although they were not present in the same layer. Because the tracks were found so close to the nests, it is likely that aetosaurs built them.
One aetosaur, Typothorax coccinarum, has been used to define the Revueltian land vertebrate faunachron. A land vertebrate faunachron (LVF) is a time interval that is defined by the first appearance datum (FAD), or first occurrence, of a tetrapod index fossil and is commonly used to date Late Triassic and Early Jurassic terrestrial strata. Since the FAD of T. coccinarum is at the beginning of the Norian stage, the Revueltian LVF starts at the beginning of the Norian around 216 million years ago. The Revueltian ends with the next FAD, which happens to be that of the phytosaur Redondasaurus and the start of the Apachean LVF.
Biochrons for aetosaur genera have been developed for dating strata in the Chinle Group of the southwestern United States. Up to 13 genera of aetosaurs are known from the Chinle Group, with most occurring in multiple localities and over short time spans. In 1996, paleontologists Spencer G. Lucas and Andrew B. Heckert recognized five biochrons based on the presence of aetosaurs throughout the Chinle Group. The number of biochrons grew to 11 in a 2007 study by Heckert and Lucas along with Adrian P. Hunt and Justin A. Spielmann. These biochrons occurred from the Otischalkian LVF to the Apachean LVF and included genera such as Longosuchus, Tecovasuchus, and Typothorax.
A coinciding controversy occurred after Spielmann, Hunt, and Lucas published a 2006 paper mentioning that the holotype of Redondasuchus was not a left paramedian, but instead a right one. In 2002, Jeff Martz came to the same conclusion in an unpublished thesis. He, along with Taylor, Wedel, and Naish, claimed that this was another form of plagiarism, as Martz's 2002 thesis was cited by Spielmann et al. (2006), even if his conclusion on Redondasuchus was not mentioned.
The allegations were rejected in an internal NMMNHS meeting, reported by Lucas in 2008. They were also brought to the attention of an independent party, the Ethics Education Committee of the Society of Vertebrate Paleontology (SVP) in 2007, and a response was given in 2008. In regard to Redondasuchus, the SVP found no explicit evidence for plagiarism. In the case of Heliocanthus and Rioarribasuchus, the SVP did not try to resolve the issue, as Lucas et al. and Parker offered conflicting accounts regarding communication and intent. The SVP's response concluded with an update to its ethics policy and recommendations for how similar controversies could be better handled in the future. The entire controversy came to be known as "Aetogate", in reference to the famous Watergate scandal of the 1970s. It received wide attention from local Albuquerque newspapers and science blogs. It was also the focus of a news article in a 2008 issue of the journal Nature.
/ref> Aetosaurs which do not fit into these two categories, such as Stagonolepis and Neoaetosauroides, generally had narrow forms, slender limbs, and a restriction in the carapace above the hip. This body type is plesiomorphic (ancestral) to the other two shapes, with some narrow-bodied aetosaurs more closely related to typothoracines and others closer to desmatosuchines. Some plesiomorphic genera, like the widespread Norian genus Aetosaurus and the Carnian Coahomasuchus, tended to be small, about a metre (3.2 ft) in length. Others were larger, such as the basal-most aetosaur Aetosauroides and the early desmatosuchine Calyptosuchus.
Armor
History
Early European finds
First American aetosaurs
20th century updates
Distribution
Classification
Taxonomy
List of genera
Acaenasuchus Non-aetosaurian
middle Norian (Adamanian) (Arizona)
Chinle Formation (Blue Mesa Member, Sonsela Member) A valid species of non-aetosaur Aetosauriformes, previously considered a valid aetosaur or juvenile specimens of Desmatosuchus spurensis.
Acompsosaurus Nomen dubium
Late Triassic (Adamanian) (New Mexico)
Chinle Formation (Bluewater Creek Formation) A dubious aetosaur based on a pelvis which is now lost. Possibly a junior synonym of Stagonolepis or Calyptosuchus.
Adamanasuchus Valid
early - middle Norian (Adamanian) (Arizona)
Chinle Formation (Blue Mesa Member) A large desmatosuchian, closely related to Calyptosuchus and Scutarx.
Aetobarbakinoides Valid
late Carnian - early Norian Santa Maria Formation An aetosaur with aetosaurine-like osteoderms and desmatosuchine-like vertebrae. Aetosauroides Valid
Carnian - Norian ,
Ischigualasto Formation,
Santa Maria Formation Currently considered the most basal aetosaur, as well as the most well-studied member of the group from Gondwana. It may have had a more carnivorous diet than most other aetosaurs.
Aetosaurus Valid
middle Norian - early Rhaetian? (Revueltian) ,
,
Stubensandtein,
Calcare di Zorzino Formation,
Fleming Fjord Formation A small (1.5 m, 5 ft long) Aetosaurinae aetosaur with a wide geographic distribution in Europe.
Apachesuchus Valid
late Norian - Rhaetian (Apachean) Redonda Formation A large, late-surviving probable typothoracine known solely from smooth osteoderms.
Argentinosuchus Nomen dubium
Carnian - Norian Ischigualasto Formation An indeterminate aetosaur similar to Aetosauroides and Stagonolepis
Calyptosuchus Valid
early - middle Norian (Adamanian) (Arizona, Texas)
Chinle Formation (Blue Mesa Member), Tecovas FormationA desmatosuchian similar to Stagonolepis, which it was formerly considered to be a species of.
Chilenosuchus Valid
Late Triassic A poorly-known aetosaur similar to Typothorax. It was found in strata that were originally thought to be Carboniferous or Permian in age, rather than Triassic. Coahomasuchus Valid
Carnian? (Otischalkian) (Texas, North Carolina)
Colorado City Formation,
Pekin Formation A small but wide-bodied aetosaur closely related to typothoracines.
Desmatosuchus Valid
early - middle Norian (Adamanian - earliest Revueltian?) (Texas, Arizona, New Mexico)
Cooper Canyon Formation,
Tecovas Formation,
Santa Rosa Formation,
Chinle Formation (Blue Mesa Member, Sonsela Member)Namesake of the desmatosuchines, one of the largest, most common, and most impressively-armored aetosaurs.
Garzapelta Valid
Norian? (Adamanian - Revueltian) (Texas)
Cooper Canyon Formation A possible paratypothoracine that possessed lateral osteoderms that converged with those of desmatosuchines
Gorgetosuchus Valid
Carnian? (Otischalkian) (North Carolina)
Pekin Formation A possible desmatosuchin characterized by cervical osteoderms that almost encircle the neck
Heliocanthus Junior synonym
Junior synonym of Rioarribasuchus Kocurypelta Valid Late Triassic Grabowa Formation A paratypothoracin diagnosed from skull fragments Kryphioparma Valid early - middle Norian (Adamanian) (Arizona) Chinle Formation (Blue Mesa Member) A typhothoracine based on fossils previously referred to Tecovasuchus Longosuchus Valid
Carnian? (Otischalkian) (Texas)
Colorado City Formation
A well-described desmatosuchin, the subject of major studies on aetosaur anatomy in the mid-20th century.
Lucasuchus Valid
Norian? (Otischalkian) (Texas, North Carolina)
Colorado City Formation,
Pekin FormationA desmatosuchin often conflated with Longosuchus, which it coexisted with.
Neoaetosauroides Valid
middle Norian (Revueltian) Los Colorados FormationA late-surviving basal desmatosuchian with apparent adaptations for a more carnivorous diet than most other aetosaurs.
Paratypothorax Valid
Norian
(Adamanian - Revueltian) ,
(Arizona, New Mexico, Texas),
Lower Stubensandstein,
Chinle Formation,
Dockum Group,
Fleming Fjord Formation The widespread and well-known namesake of the clade Paratypothoracini. Some authors have suggested that it represents an adult form of Aetosaurus.
Polesinesuchus Valid? late Carnian - early Norian Santa Maria Formation A small aetosaur based on an immature specimen, which may be referrable to Aetosauroides. Redondasuchus Valid
late Norian - Rhaetian (Apachean) (New Mexico)
Redonda FormationA large typothoracinae often considered a close relative or species of Typothorax.
Rioarribasuchus Valid
middle - late Norian (Revueltian) (New Mexico, Arizona)
Chinle Formation (Petrified Forest Member, Sonsela Member),
Bull Canyon Formation A narrow-bodied paratypothoracin with elongated spines on paramedian osteoderms above the hip.
Scutarx Valid
middle Norian (Adamanian) (Arizona, Texas)
Chinle Formation (Sonsela Member),
Cooper Canyon FormationA strongly-armored desmatosuchian closely related to Calyptosuchus.
Sierritasuchus Valid
early - middle Norian (Adamanian) (Texas)
Tecovas Formation A desmatosuchin known from an immature specimen originally assigned to Desmatosuchus. Stagonolepis Valid
Carnian ,
Lossiemouth Sandstone,
Krasiejów deposits The first aetosaur to be described, previously used as a wastebasket taxon for other narrow-bodied basal aetosaurs.
Stegomus Junior synonym or Nomen dubium
Norian (Revueltian) (Connecticut, New Jersey, North Carolina) New Haven Arkose,
Passaic Formation,
Sanford FormationA small aetosaur only known from interior molds of a dorsal carapace. Often interpreted as a dubious genus or a junior synonym of Aetosaurus Stenomyti Valid
late Norian (Revueltian) (Colorado)
Chinle Formation (red siltstone member) A small basal aetosaurine originally assigned to Aetosaurus, a close relative. Tecovasuchus Valid early - middle Norian (Adamanian) (Texas, New Mexico, Arizona?) Tecovas Formation,
Chinle Formation (Bluewater Creek Formation, Blue Mesa Member?)A typical wide-bodied paratypothoracin Typothorax Valid middle - late Norian (latest Adamanian - Revueltian) (Arizona, Texas, New Mexico)
Chinle Formation (Sonsela Member, Petrified Forest Member),
Cooper Canyon Formation,
Bull Canyon Formation, An abundant wide-bodied typothoracine, known from multiple articulated skeletons.
Venkatasuchus Valid middle Norian to Rhaetian Lower Dharmaram Formation A wide-bodied typothoracine, known from a series of associated paramedian and lateral osteoderms as well as an isolated paramedian osteoderm.
Phylogeny
Origin and evolution
Paleobiology
Early interpretations
Diet
Nests
Development
Biochronology
"Aetogate" naming controversy
General references
External links
|
|