An aerostat (, via French) or lighter-than-air aircraft is an aircraft that relies on buoyancy to maintain flight. Aerostats include unpowered balloons (free-flying or moored balloon) and aircraft engine .
The relative density of an aerostat as a whole is lower than that of the surrounding atmospheric air (hence the name "lighter-than-air"). Its main component is one or more gas capsules made of lightweight skins, containing a lifting gas (hot air, or any gas with lower density than air, typically hydrogen or helium) that displaces a large volume of air to generate enough buoyancy to overcome its own weight. Payload (passengers and cargo) can then be carried on attached components such as a basket, a gondola, a cabin or various . With airships, which need to be able to fly against wind, the lifting gas capsules are often protected by a more rigid outer envelope or an airframe, with other gasbags such as to help modulate buoyancy.
Aerostats are so named because they use aerostatic buoyant force that does not require any forward movement through the surrounding air mass, resulting in the inherent ability to levitate and perform vertical takeoff and landing. This contrasts with the heavier-than-air aerodynes that primarily use aerodynamic lift, which must have consistent airflow over an aerofoil (wing) surface to stay airborne. The term has also been used in a narrower sense, to refer to the statically tethered balloon in contrast to the free-flying airship. This article uses the term in its broader sense.
Historically, all aerostats were called balloons. Powered types capable of horizontal flight were referred to as dirigible balloons or simply dirigibles (from the French dirigeable, meaning "steerable"). These powered aerostats later came to be called , with the term "balloon" reserved for unpowered types, whether tethered (which means attached to the ground) or free-floating.Wragg, D.; Historical dictionary of aviation, History Press (2008).
More recently, the US Government Accountability Office has used the term "aerostat" in a different sense, to distinguish the statically tethered balloon from the free-flying airship.
Although a free balloon travels at the speed of the wind, it is travelling with the wind so to a passenger the air feels calm and windless. To change its altitude above ground it must either adjust the amount of lift or discard ballast weight. Notable uses of free-flying balloons include meteorological balloons and sport balloons.
A tethered balloon is held down by one or more mooring lines or tethers. It has sufficient lift to hold the line taut and its altitude is controlled by the line in or out. A tethered balloon does feel the wind. A round balloon is unstable and bobs about in strong winds, so the kite balloon was developed with an aerodynamic shape similar to a non-rigid airship. Both kite balloons and non-rigid airships are sometimes called "blimps". Notable uses of tethered balloons include observation balloons and and notable uses of untethered balloons include espionage balloons and .
A rigid airship has an outer framework or skin surrounding the lifting gas bags inside it, The outer envelope keeps its shape even if the gasbags are deflated. The great zeppelin airships of the twentieth century were rigid types.
A non-rigid airship or blimp deflates like a balloon as it loses gas. The are still a common sight in the USA.
A semi-rigid airship has a deflatable gas bag like a non-rigid but with a supporting structure to help it hold its shape while aloft. The first practical airship, the Santos-Dumont No. 6 was a semi-rigid.
Some airships obtain additional lift aerodynamically as they travel through the air, using the shape of their envelope or through the addition of fins or even small wings. Types designed to exploit this lifting effect in normal cruise are called .
The Allsopp Helikite is a combination of a helium balloon and a kite to form a single, aerodynamically sound tethered aircraft, that exploits both wind and helium for its lift. Helikites are semi-rigid. Helikites are considered the most stable, energy and cost-efficient aerostats available.EU FP7 ABSOLUTE Project: Aerial Platforms Study This gives Helikites various advantages over traditional aerostats. Traditional aerostats need to use relatively low-lift helium gas to combat high winds, which means they need to have a lot of gas to cope and so are very large, unwieldy and expensive. Helikites exploit wind lift so they only need to be a fraction of the size of traditional aerostats in order to operate in high winds. Helikites fly many times higher altitude than traditional aerostats of the same size. Being smaller, with fewer construction seams, means Helikites have minimal problems with gas leakage compared to traditional aerostats, so Helikites use far less helium.
Helikites do not need and so are simpler in construction than traditional aerostats and Helikites do not need constant electrical power to keep them airborne. Helikites are also extremely stable and so are good aerial platforms for cameras or scientific instruments. Tiny Helikites will fly in all weathers, so these sizes are popular as they are very reliable but still easy to handle and do not require large expensive winches. Helikites can be small enough to fit fully inflated in a car but they can also be made large if heavy payloads are required to be flown to high altitudes. Helikites are one of the most popular aerostat designs and are widely used by the scientific community, military, photographers, geographers, police, first responders. Helikites are used by telecoms companies to lift 4G and 5G base stations for areas without cellphone coverage.
Helikites range in size from 1 metre (gas volume 0.13 m3) with a pure helium lift of 30g, up to 14 metres (gas volume 250m3) able to lift 117 kg. Small Helikites can fly up to altitudes of 1,000 ft, and medium-sized Helikites up to altitudes of 3,000 ft, while large Helikites can achieve 7,000 ft.
Piasecki Helicopter developed the Piasecki PA-97 Helistat using the rotor systems from four obsolete helicopters and a surplus Navy blimp, in order to provide a capability to lift heavier loads than a single helicopter could provide. The aircraft suffered a fatal accident during a test flight. In 2008, Boeing and SkyHook International resurrected the concept and announced a proposed design of the SkyHook JHL-40.
To ascend, the aerostat releases ballast, which typically consists of sandbags or other weights, reducing its overall weight and making it lighter than the air it displaces. Alternatively, it may adjust the temperature of the gas (if using hot air) or expand the volume of gas within its envelope. As the gas volume increases, the aerostat becomes less dense and rises. This is controlled either through heating (in the case of hot air balloons) or by adjusting the valves that manage the flow of gas between different compartments or the outside atmosphere. Helium-based aerostats, such as blimps, rely on maintaining the integrity and volume of the helium within their envelope to achieve a stable lift.
When descending, the aerostat must reduce its buoyancy, which can be done by venting some of the gas or by taking on additional ballast. Venting gas allows the envelope to lose volume, making the aerostat denser than the surrounding air and causing it to descend. However, venting must be done cautiously, especially with helium, as it is a limited resource and cannot be replenished easily during flight. Alternatively, an aerostat might use a reversible system where it can compress the gas into smaller compartments within the envelope, reducing lift without permanently losing the gas. By managing these compartments or adjusting the flow of gas, the aerostat’s buoyancy can be precisely controlled.
To maintain altitude, an aerostat achieves a balance where the lift force generated by the gas equals the weight of the aerostat. This equilibrium is achieved through small adjustments in ballast or the gas volume. Sophisticated systems might use automatic valves and sensors to monitor atmospheric pressure, gas volume, and temperature, ensuring that the aerostat remains stable without manual intervention. This constant regulation allows aerostats to hover at a fixed altitude for extended periods, making them useful for applications such as surveillance, communication relays, or scientific observations, where maintaining a consistent position in the atmosphere is crucial.
|
|