Product Code Database
Example Keywords: undershirt -take $93-182
barcode-scavenger
   » Wiki: Acantharia
Tag Wiki 'Acantharia'.
Tag

Acantharia

 C O N T E N T S 

Related Products

An Arch�ological Dictionary;classical Antiquities Of The Jews, Greeks, And Romans, Alphabetically Arranged

Rule your world in a sexy Greek Goddess costume. Mere mortals won't be able to resist when they see you wearing this asymmetrical white dress and matching headband. The outfit is made of a stretchy fabric that hugs every heavenly curve of your body.

In addition, its one of the few Greek plays youll read that portrays women as genuine human beings rather than murderers, decorations, or idiots. Theyre smart, sexy, and socially aware, especially in a time when they were very seriously repressed.Lysistrat..

This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc...

In its Latin version, it had a strong influence on the Occidental world. The Syriac version had a similar influence on the Orient and is presented here for the first time in an interlinear form: Greek and Syriac, together with a German and an English trans..

This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc...

The Acantharia are a group of , distinguished mainly by their strontium sulfate skeletons. Acantharians are marine that range in size from about 200 microns in diameter up to several millimeters. Some acantharians have and hence are considered .


Morphology
Acantharian skeletons are composed of strontium sulfate, SrSO4, in the form of mineral celestine crystal. Celestine is named for the delicate blue colour of its crystals, and is the heaviest mineral in the ocean. The denseness of their celestite ensures acantharian shells function as , resulting in fast sedimentation to . High settling of acantharian have been observed at times in the Iceland Basin and the , as much as half of the total gravitational flux. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.

The strontium sulfate crystals are secreted by surrounding each spicule or spine. Acantharians are unique among marine organisms for their ability to biomineralize strontium sulfate as the main component of their skeletons. However, unlike other radiolarians whose skeletons are made of silica, acantharian skeletons do not , primarily because strontium sulfate is very scarce in seawater and the crystals dissolve after the acantharians die. The arrangement of the spines is very precise, and is described by what is called the Müllerian law in terms of lines of latitude and longitude – the spines lie on the intersections between five of the former, symmetric about an equator, and eight of the latter, spaced uniformly. Each line of longitude carries either two tropical spines or one equatorial and two polar spines, in alternation.

The cell is divided into two regions: the and the ectoplasm. The endoplasm, at the core of the cell, contains the main , including many nuclei, and is delineated from the ectoplasm by a capsular wall made of a mesh. In symbiotic species, the are maintained in the endoplasm. The ectoplasm consists of cytoplasmic extensions used for prey capture and also contains food vacuoles for prey digestion. The ectoplasm is surrounded by a , also made up of , but arranged into twenty plates, each with a hole through which one spicule projects. The cortex is linked to the spines by , which assist in control by allowing the ectoplasm to expand and contract, increasing and decreasing the total volume of the cell.


Taxonomy
The way that the spines are joined at the center of the cell varies and is one of the primary characteristics by which acantharians are classified. The skeletons are made up of either ten diametric or twenty radial spicules. Diametric spicules cross the center of the cell, whereas radial spicules terminate at the center of the cell where they either form a tight or flexible junction depending on species. Acantharians with diametric spicules or loosely attached radial spicules are able to rearrange or shed spicules and form cysts.

  • – 10 diametric spicules, simply crossed, no central junction, capable of encystment
  • – 20 radial spicules, loosely attached, capable of encystment
  • – 20 radial spicules, tight central junction
  • – 20 radial spines, tight central junction

The morphological classification system roughly agrees with phylogenetic trees based on the alignment of genes, although the groups are mostly polyphyletic. Holacanthida seems to have evolved first and includes molecular clades A, B, and D. Chaunacanthida evolved second and includes only one molecular clade, clade C. Arthracanthida and Symphacanthida, which have the most complex skeletons, evolved most recently and constitute molecular clades E and F.


Symbiosis
Many acantharians, including some in clade B (Holacanthida) and all in clades E & F (Symphiacanthida and Arthracanthida), host single-celled algae within their inner cytoplasm (endoplasm). By participating in this , acantharians are essentially : they acquire energy through both heterotrophy and autotrophy. The relationship may make it possible for acantharians to be abundant in low-nutrient regions of the oceans and may also provide extra energy necessary to maintain their elaborate strontium sulfate skeletons. It is hypothesized that the acantharians provide the algae with nutrients (N & P) that they acquire by capturing and digesting prey in return for sugar that the algae produces during photosynthesis. It is not known, however, whether the algal symbionts benefit from the relationship or if they are simply being exploited and then digested by the acantharians.

Symbiotic Holacanthida acantharians host diverse symbiont assemblages, including several genera of ( Pelagodinium, Heterocapsa, Scrippsiella, Azadinium) and a ( ). Clade E & F acantharians have a more specific symbiosis and primarily host symbionts from the haptophyte genus , although they sometimes also host Chrysochromulina symbionts. Clade F acantharians simultaneously host multiple species and strains of Phaeocystis and their internal symbiont community does not necessarily match the relative availability of potential symbionts in the surrounding environment. The mismatch between internal and external symbiont communities suggests that acantharians can be selective in choosing symbionts and probably do not continuously digest and recruit new symbionts, and maintain symbionts for extended periods of time instead.


Life cycle
Adults are usually multinucleated. Earlier diverging clades are able to shed their spines and form cysts, which are often referred to as reproductive cysts. Reproduction is thought to take place by formation of swarmer cells (formerly referred to as "spores"), which may be , and cysts have been observed to release these swarmers. Non-encysted cells have also been seen releasing swarmers in laboratory conditions. Not all life cycle stages have been observed, however, and no one has witnessed the fusion of swarmers to produce a new acantharian. Cysts are often found in and it is therefore believed that the cysts help acantharians sink into deep water. Genetic data and some imaging suggests that non-cyst-forming acantharians may also sink to deep water to release swarmers. Releasing swarmer cells in deeper water may improve the survival chances of juveniles. Study of these organisms has been hampered mainly by an inability to "close the lifecycle" and maintain these organisms in culture through successive generations.

Page 1 of 1
1
Post Comment
Font Size...
Font Family...
Font Format...

Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs