Viscoelasticity is a material property that combines both viscous and elastic characteristics. Many materials have such viscoelastic properties. Especially materials that consist of large molecules show viscoelastic properties. are viscoelastic because their can make temporary entanglements with neighbouring molecules which causes elastic properties. After some time these entanglements will disappear again and the macromolecules will flow into other positions where new entanglements will be made (viscous properties).
A viscoelastic material will show elastic properties on short time scales and viscous properties on long time scales. These materials exhibit behavior that depends on the time and rate of applied forces, allowing them to both store and dissipate energy.
Viscoelasticity has been studied since the nineteenth century by researchers such as James Clerk Maxwell, Ludwig Boltzmann, and Lord Kelvin.
Several models are available for the mathematical description of the viscoelastic properties of a substance:
The viscoelastic properties of polymers are highly temperature dependent. From low to high temperature the material can be in the glass phase, rubber phase or the melt phase. These phases have a very strong effect on the mechanical and viscous properties of the polymers.
Typical viscoelastic properties are:
The viscoelasticity properties are measured with various techniques, such as tensile testing, dynamic mechanical analysis, shear rheometry and extensional rheometry.
Viscoelasticity calculations depend heavily on the viscosity variable, η. The inverse of η is also known as fluidity, φ. The value of either can be derived as a function of temperature or as a given value (i.e. for a dashpot).Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103.
Depending on the change of strain rate versus stress inside a material, the viscosity can be categorized as having a linear, non-linear, or plastic response:
Some examples of viscoelastic materials are amorphous polymers, semicrystalline polymers, biopolymers, metals at very high temperatures, and bitumen materials. Cracking occurs when the strain is applied quickly and outside of the elastic limit. and in the human body are viscoelastic, so the extent of the potential damage to them depends on both the rate of the change of their length and the force applied.
A viscoelastic material has the following properties:
Specifically, viscoelasticity is a molecular rearrangement. When a stress is applied to a viscoelastic material such as a polymer, parts of the long polymer chain change positions. This movement or rearrangement is called creep. Polymers remain a solid material even when these parts of their chains are rearranging to accommodate the stress, and as this occurs, it creates a back stress in the material. When the back stress is the same magnitude as the applied stress, the material no longer creeps. When the original stress is taken away, the accumulated back stresses will cause the polymer to return to its original form. The material creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix -elasticity.
Linear viscoelasticity is usually applicable only for small deformations.
Nonlinear viscoelasticity is when the function is not separable. It usually happens when the deformations are large or if the material changes its properties under deformations. Nonlinear viscoelasticity also elucidates observed phenomena such as normal stresses, shear thinning, and extensional thickening in viscoelastic fluids.
An anelastic material is a special case of a viscoelastic material: an anelastic material will fully recover to its original state on the removal of load.
When distinguishing between elastic, viscous, and forms of viscoelastic behavior, it is helpful to reference the time scale of the measurement relative to the relaxation times of the material being observed, known as the Deborah number (De) where:
where
A complex dynamic modulus G can be used to represent the relations between the oscillating stress and strain:
where ; is the storage modulus and is the loss modulus'':
where and are the amplitudes of stress and strain respectively, and is the phase shift between them.
Viscoelastic behavior has elastic and viscous components modeled as linear combinations of springs and dashpots, respectively. Each model differs in the arrangement of these elements, and all of these viscoelastic models can be equivalently modeled as electrical circuits.
In an equivalent electrical circuit, stress is represented by current, and strain rate by voltage. The elastic modulus of a spring is analogous to the inverse of a circuit's inductance (it stores energy) and the viscosity of a dashpot to a circuit's resistance (it dissipates energy).
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula:
where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.
The viscous components can be modeled as dashpots such that the stress–strain rate relationship can be given as,
where σ is the stress, η is the viscosity of the material, and dε/dt is the time derivative of strain.
The relationship between stress and strain can be simplified for specific stress or strain rates. For high stress or strain rates/short time periods, the time derivative components of the stress–strain relationship dominate. In these conditions it can be approximated as a rigid rod capable of sustaining high loads without deforming. Hence, the dashpot can be considered to be a "short-circuit".Van Vliet, Krystyn J. (2006). "3.032 Mechanical Behavior of Materials"
Conversely, for low stress states/longer time periods, the time derivative components are negligible and the dashpot can be effectively removed from the system – an "open" circuit. As a result, only the spring connected in parallel to the dashpot will contribute to the total strain in the system.
Under this model, if the material is put under a constant strain, the stresses gradually Relaxation time. When a material is put under a constant stress, the strain has two components. First, an elastic component occurs instantaneously, corresponding to the spring, and relaxes immediately upon release of the stress. The second is a viscous component that grows with time as long as the stress is applied. The Maxwell model predicts that stress decays exponentially with time, which is accurate for most polymers. One limitation of this model is that it does not predict creep accurately. The Maxwell model for creep or constant-stress conditions postulates that strain will increase linearly with time. However, polymers for the most part show the strain rate to be decreasing with time.
This model can be applied to soft solids: thermoplastic polymers in the vicinity of their melting temperature, fresh concrete (neglecting its aging), and numerous metals at a temperature close to their melting point.
The equation introduced here, however, lacks a consistent derivation from more microscopic model and is not observer independent. The Upper-convected Maxwell model is its sound formulation in terms of the Cauchy stress tensor and constitutes the simplest tensorial constitutive model for viscoelasticity (see e.g.
The constitutive relation is expressed as a linear first-order differential equation:
This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain. When the stress is released, the material gradually relaxes to its undeformed state. At constant stress (creep), the model is quite realistic as it predicts strain to tend to σ/E as time continues to infinity. Similar to the Maxwell model, the Kelvin–Voigt model also has limitations. The model is extremely good with modelling creep in materials, but with regards to relaxation the model is much less accurate.
This model can be applied to organic polymers, rubber, and wood when the load is not too high.
Under a constant stress, the modeled material will instantaneously deform to some strain, which is the instantaneous elastic portion of the strain. After that it will continue to deform and asymptotically approach a steady-state strain, which is the retarded elastic portion of the strain. Although the standard linear solid model is more accurate than the Maxwell and Kelvin–Voigt models in predicting material responses, mathematically it returns inaccurate results for strain under specific loading conditions.
This model incorporates viscous flow into the standard linear solid model, giving a linearly increasing asymptote for strain under fixed loading conditions.
where:
where denotes the stress tensor.
The model can be written as:
where:
Whilst the model gives good approximations of viscoelastic fluids in shear flow, it has an unphysical singularity in extensional flow, where the dumbbells are infinitely stretched. This is, however, specific to idealised flow; in the case of a cross-slot geometry the extensional flow is not ideal, so the stress, although singular, remains integrable, although the stress is infinite in a correspondingly infinitely small region.
If the solvent viscosity is zero, the Oldroyd-B becomes the Upper Convected Maxwell model.
For the isothermal conditions the model can be written as:
where:
The strain damping function is usually written as:
If the value of the strain hardening function is equal to one, then the deformation is small; if it approaches zero, then the deformations are large.
where is the long term modulus once the material is totally relaxed, are the relaxation times (not to be confused with in the diagram); the higher their values, the longer it takes for the stress to relax. The data is fitted with the equation by using a minimization algorithm that adjust the parameters () to minimize the error between the predicted and data values.E. J. Barbero. "Time-temperature-age Superposition Principle for Predicting Long-term Response of Linear Viscoelastic Materials", chapter 2 in Creep and fatigue in polymer matrix composites. Woodhead, 2011.
An alternative form is obtained noting that the elastic modulus is related to the long term modulus by
Therefore,
This form is convenient when the elastic shear modulus is obtained from data independent from the relaxation data, and/or for computer implementation, when it is desired to specify the elastic properties separately from the viscous properties, as in Simulia (2010).Simulia. Abaqus Analysis User's Manual, 19.7.1 "Time domain vicoelasticity", 6.10 edition, 2010
A creep experiment is usually easier to perform than a relaxation one, so most data is available as (creep) compliance vs. time. Computer Aided Material Preselection by Uniform Standards Unfortunately, there is no known closed form for the (creep) compliance in terms of the coefficient of the Prony
series. So, if one has creep data, it is not easy to get the coefficients of the (relaxation) Prony series, which are needed for example in. An expedient way to obtain these coefficients is the following. First, fit the creep data with a model that has closed form solutions in both compliance and relaxation; for example the Maxwell-Kelvin model
(eq. 7.18-7.19) in Barbero (2007)E. J. Barbero. Finite Element Analysis of Composite Materials. CRC Press, Boca Raton, Florida, 2007. or the Standard Solid Model (eq. 7.20-7.21) in Barbero (2007) (section 7.1.3). Once the parameters of the creep model are known, produce relaxation pseudo-data with the conjugate relaxation model for the same
times of the original data. Finally, fit the pseudo data with the Prony series.
More detailed effect of temperature on the viscoelastic behavior of polymer can be plotted as shown.
There are mainly five regions (some denoted four, which combines IV and V together) included in the typical polymers.
Extreme cold temperatures can cause viscoelastic materials to change to the Glass transition phase and become brittle. For example, exposure of pressure sensitive adhesives to extreme cold (dry ice, freeze spray, etc.) causes them to lose their tack, resulting in debonding.
At time , a viscoelastic material is loaded with a constant stress that is maintained for a sufficiently long time period. The material responds to the stress with a strain that increases until the material ultimately fails, if it is a viscoelastic liquid. If, on the other hand, it is a viscoelastic solid, it may or may not fail depending on the applied stress versus the material's ultimate resistance. When the stress is maintained for a shorter time period, the material undergoes an initial strain until a time , after which the strain immediately decreases (discontinuity) then gradually decreases at times to a residual strain.
Viscoelastic creep data can be presented by plotting the creep modulus (constant applied stress divided by total strain at a particular time) as a function of time.Rosato, et al. (2001): "Plastics Design Handbook", 63-64. Below its critical stress, the viscoelastic creep modulus is independent of stress applied. A family of curves describing strain versus time response to various applied stress may be represented by a single viscoelastic creep modulus versus time curve if the applied stresses are below the material's critical stress value.
Viscoelastic creep is important when considering long-term structural design. Given loading and temperature conditions, designers can choose materials that best suit component lifetimes.
Despite the apparent limitations mentioned above, extensional rheometry can also be performed on high viscosity fluids. Although this requires the use of different instruments, these techniques and apparatuses allow for the study of the extensional viscoelastic properties of materials such as polymer melts. Three of the most common extensional rheometry instruments developed within the last 50 years are the Meissner-type rheometer, the filament stretching rheometer (FiSER), and the Sentmanat Extensional Rheometer (SER).
The Meissner-type rheometer, developed by Meissner and Hostettler in 1996, uses two sets of counter-rotating rollers to strain a sample uniaxially. This method uses a constant sample length throughout the experiment, and supports the sample in between the rollers via an air cushion to eliminate sample sagging effects. It does suffer from a few issues – for one, the fluid may slip at the belts which leads to lower strain rates than one would expect. Additionally, this equipment is challenging to operate and costly to purchase and maintain.
The FiSER rheometer simply contains fluid in between two plates. During an experiment, the top plate is held steady and a force is applied to the bottom plate, moving it away from the top one. The strain rate is measured by the rate of change of the sample radius at its middle. It is calculated using the following equation:
where is the mid-radius value and is the strain rate. The viscosity of the sample is then calculated using the following equation:
where is the sample viscosity, and is the force applied to the sample to pull it apart.
Much like the Meissner-type rheometer, the SER rheometer uses a set of two rollers to strain a sample at a given rate. It then calculates the sample viscosity using the well known equation:
where is the stress, is the viscosity and is the strain rate. The stress in this case is determined via torque transducers present in the instrument. The small size of this instrument makes it easy to use and eliminates sample sagging between the rollers. A schematic detailing the operation of the SER extensional rheometer can be found on the right.
Linear viscoelasticity and nonlinear viscoelasticity
Dynamic modulus
Constitutive models of linear viscoelasticity
Maxwell model
Kelvin–Voigt model
Standard linear solid model
Jeffreys model
Burgers model
Generalized Maxwell model
Constitutive models for nonlinear viscoelasticity
Second-order fluid
Upper-convected Maxwell model
Oldroyd-B model
Wagner model
Prony series
Effect of temperature
Viscoelastic creep
Measurement
Shear rheometry
Extensional rheometry
Other methods
See also
|
|