An unmanned aerial vehicle ( UAV), commonly known as a drone, is an aircraft without any human Aircraft pilot, crew, or passengers on board. UAVs were originally developed through the twentieth century for military missions too "dull, dirty or dangerous" for humans, and by the twenty-first, they had become essential assets to most militaries. As control technologies improved and costs fell, their use expanded to many non-military applications. These include aerial photography, area coverage,F. Rekabi-Bana; Hu, J.; T. Krajník; Arvin, F., " Unified Robust Path Planning and Optimal Trajectory Generation for Efficient 3D Area Coverage of Quadrotor UAVs" IEEE Transactions on Intelligent Transportation Systems, 2023. precision agriculture, forest fire monitoring,Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F., " Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring" Aerospace Science and Technology, 2022. river monitoring, environmental monitoring, policing and surveillance, infrastructure inspections, smuggling, Delivery drone, entertainment, and drone racing.
The term drone has been used from the early days of aviation, some being applied to remotely flown target aircraft used for practice firing of a battleship's guns, such as the 1920s Fairey III and 1930s de Havilland Queen Bee. Later examples included the Airspeed Queen Wasp and Miles Martinet, before ultimate replacement by the GAF Jindivik.Note; the term "drone" refers to the male bee that serves only to fertilize the queen bee, hence the use of the name in reference to the DH Queen Bee aerial target. The term remains in common use. In addition to the software, autonomous drones also employ a host of advanced technologies that allow them to carry out their missions without human intervention, such as cloud computing, computer vision, artificial intelligence, machine learning, deep learning, and thermal sensors. For recreational uses, an aerial photography drone is an aircraft that has first-person video, autonomous capabilities, or both.
An unmanned aerial vehicle ( UAV) is defined as a "powered, aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or nonlethal payload". UAV is a term that is commonly applied to military use cases. with warheads are generally not considered UAVs because the vehicle itself is a munition, but certain types of propeller-based missile are often called "kamikaze drones" by the public and media. Also, the relation of UAVs to remote controlled model aircraft is unclear, UAVs may or may not include remote-controlled model aircraft. Some jurisdictions base their definition on size or weight; however, the US FAA defines any unmanned flying craft as a UAV regardless of size. A similar term is remotely piloted aerial vehicle ( RPAV).
UAVs or RPAVs can also be seen as a component of an unmanned aircraft system ( UAS), which also includes a ground-based controller and a system of communications with the aircraft. The term UAS was adopted by the United States Department of Defense (DoD) and the United States Federal Aviation Administration (FAA) in 2005 according to their Unmanned Aircraft System Roadmap 2005–2030. The International Civil Aviation Organization (ICAO) and the British Civil Aviation Authority adopted this term, also used in the European Union's Single European Sky (SES) Air Traffic Management (ATM) Research (SESAR Joint Undertaking) roadmap for 2020. This term emphasizes the importance of elements other than the aircraft. It includes elements such as ground control stations, data links and other support equipment. Similar terms are unmanned aircraft vehicle system ( UAVS) and remotely piloted aircraft system ( RPAS). Many similar terms are in use. Under new regulations which came into effect 1 June 2019, the term RPAS has been adopted by the Canadian Government to mean "a set of configurable elements consisting of a remotely piloted aircraft, its control station, the command and control links and any other system elements required during flight operation".
!Size | Small | Medium | Large | Larger | Largest |
!Max take-off wt | < | > 20 & < 55 | > 55 & < 1320 | > | > |
!Operating altitude | < | < | < | < | > |
!Speed | < | < | < | Any speed | Any speed |
>'''Range (km)''': | < 5 | > 5 & < 50 | > 50 & < 150 | > 150 & < 650 | > 650 |
>'''Endurance (hr)''': | 0.5 – 0.75 | 1–6 | 8–12 | 12 – 36 or 48 | > 36 or 48 |
>'''Length/Wingspan''': | < 50 cm | > 50 cm & < 2 m | 5 –10 m | > 10 m |
>'''Weight''': | < 250 gm | ≥ 250 gm & <02 kg | ≥ 02 kg & <25 kg | ≥ 25 kg & <150 kg | ≥ 150 kg |
The Spanish engineer Leonardo Torres Quevedo introduced a radio-based control-system called the Tapan K. Sarkar, History of wireless, John Wiley and Sons, 2006, , p. 97. at the Paris Academy of Science in 1903, as a way of testing without risking human life.Biodiversity Heritage Library. Mécanique Appliquée. - Sur le télékine. Note de M. L. Torres, présentée par M. Appell 3 August 1903, pp. 317-319, Comptes rendus de l'Académie des Sciences.Randy Alfred, " Nov. 7, 1905: Remote Control Wows Public", Wired, 7 November 2011.
Significant development of drones started in the 1900s, and originally focused on providing practice targets for training military personnel. The earliest attempt at a powered UAV was Archibald Low's "Aerial Target" in 1916.Taylor, John W. R.. Jane's Pocket Book of Remotely Piloted Vehicles. Low confirmed that Geoffrey de Havilland's monoplane was the one that flew under control on 21 March 1917 using his radio system.Professor A. M. Low FLIGHT, 3 October 1952 page 436 "The First Guided Missile" Following this successful demonstration in the spring of 1917 Low was transferred to develop aircraft controlled fast motor launches D.C.B.s with the Royal Navy in 1918 intended to attack shipping and port installations and he also assisted Wing Commander Brock in preparations for the Zeebrugge Raid. Other British unmanned developments followed, leading to the fleet of over 400 de Havilland 82 Queen Bee aerial targets that went into service in 1935.
Nikola Tesla described a fleet of uncrewed aerial combat vehicles in 1915. These developments also inspired the construction of the Kettering Bug by Charles Kettering from Dayton, Ohio and the Hewitt-Sperry Automatic Airplane – initially meant as an uncrewed plane that would carry an explosive payload to a predetermined target. Development continued during World War I, when the Dayton-Wright Airplane Company invented a pilotless aerial torpedo that would explode at a preset time.
The film star and model-airplane enthusiast Reginald Denny developed the first scaled remote piloted vehicle in 1935.
Soviet researchers experimented with controlling Tupolev TB-1 bombers remotely in the late 1930s.
During the War of Attrition (1967–1970) in the Middle East, Israeli intelligence tested the first tactical UAVs installed with reconnaissance cameras, which successfully returned photos from across the Suez Canal. This was the first time that tactical UAVs that could be launched and landed on any short runway (unlike the heavier jet-based UAVs) were developed and tested in battle.
In the 1973 Yom Kippur War, Israel used UAVs as decoys to spur opposing forces into wasting expensive anti-aircraft missiles. After the 1973 Yom Kippur war, a few key people from the team that developed this early UAV joined a small startup company that aimed to develop UAVs into a commercial product, eventually purchased by Tadiran and leading to the development of the first Israeli UAV.
In 1973, the U.S. military officially confirmed that they had been using UAVs in Southeast Asia (Vietnam). Over 5,000 U.S. airmen had been killed and over 1,000 more were missing or POW. The USAF 100th Strategic Reconnaissance Wing flew about 3,435 UAV missions during the war at a cost of about 554 UAVs lost to all causes. In the words of USAF General George S. Brown, Commander, Air Force Systems Command, in 1972, "The only reason we need (UAVs) is that we don't want to needlessly expend the man in the cockpit." Later that year, General John C. Meyer, Commander in Chief, Strategic Air Command, stated, "we let the drone do the high-risk flying ... the loss rate is high, but we are willing to risk more of them ...they save lives!"
During the 1973 Yom Kippur War, Soviet-supplied surface-to-air missile-batteries in Egypt and Syria caused heavy damage to Israeli . As a result, Israel developed the IAI Scout as the first UAV with real-time surveillance. The images and radar decoys provided by these UAVs helped Israel to completely neutralize the Syrian at the start of the 1982 Lebanon War, resulting in no pilots downed. In Israel in 1987, UAVs were first used as proof-of-concept of super-agility, post-stall controlled flight in combat-flight simulations that involved tailless, stealth-technology-based, three-dimensional thrust vectoring flight-control, and jet-steering.
CAPECON project, a European Union project to develop UAVs, ran from 1 May 2002 to 31 December 2005.
, the United States Air Force (USAF) employed 7,494 UAVs almost one in three USAF aircraft. The Central Intelligence Agency also operated UAVs. By 2013 at least 50 countries used UAVs. China, Iran, Israel, Pakistan, Turkey, and others designed and built their own varieties. The use of drones has continued to increase.Sayler (2015) Due to their wide proliferation, no comprehensive list of UAV systems exists.Singer, Peter W. "A Revolution Once More: Unmanned Systems and the Middle East" , The Brookings Institution , November 2009.Franke, Ulrike Esther "The, in Mike Aaronson (ed) Precision Strike Warfare and International Intervention, Routledge 2015.
The development of smart technologies and improved electrical-power systems led to a parallel increase in the use of drones for consumer and general aviation activities. As of 2021, quadcopter drones exemplify the widespread popularity of hobby radio-controlled aircraft and toys, however the use of UAVs in commercial and general aviation is limited by a lack of autonomy and by new regulatory environments which require line-of-sight contact with the pilot.
In 2020, a STM Kargu drone hunted down and attacked a human target in Libya, according to a report from the UN Security Council's Panel of Experts on Libya, published in March 2021. This may have been the first time an autonomous killer-robot armed with lethal weaponry attacked human beings.
Superior drone technology, specifically the Turkish Bayraktar TB2, played a role in Azerbaijan's successes in the 2020 Nagorno-Karabakh war against Armenia.
UAVs are also used in NASA missions. The Ingenuity helicopter is an autonomous UAV that operated on Mars from 2021 to 2024. Current the Dragonfly spacecraft is being developed, and is aiming to reach and examine Saturn's moon Titan. Its primary goal is to roam around the surface, expanding the amount of area to be researched previously seen by landers. As a UAV, Dragonfly allows examination of potentially diverse types of soil. The drone is set to launch in 2027, and is estimated to take seven more years to reach the Saturnian system.
Miniaturization is also supporting the development of small UAVs which can be used as individual system or in a fleet offering the possibility to survey large areas, in a relatively small amount of time.
According to data from GlobalData, the global military uncrewed aerial systems (UAS) market, which forms a significant part of the UAV industry, is projected to experience a compound annual growth rate of 4.8% over the next decade. This represents a near doubling in market size, from $12.5 billion in 2024 to an estimated $20 billion by 2034.
Small civilian UAVs have no life-critical systems, and can thus be built out of lighter but less sturdy materials and shapes, and can use less robustly tested electronic control systems. For small UAVs, the quadcopter design has become popular, though this layout is rarely used for crewed aircraft. Miniaturization means that less-powerful propulsion technologies can be used that are not feasible for crewed aircraft, such as small electric motors and batteries.
Control systems for UAVs are often different from crewed craft. For remote human control, a camera and video link almost always replace the cockpit windows; radio-transmitted digital commands replace physical cockpit controls. Autopilot software is used on both crewed and uncrewed aircraft, with varying feature sets.
For conventional flight the flying wing and blended wing body offer light weight combined with low drag and stealth aircraft, and are popular configurations for many use cases. Larger types which carry a variable payload are more likely to feature a distinct fuselage with a tail for stability, control and trim, although the wing configurations in use vary widely.
For uses that require vertical flight or hovering, the tailless quadcopter requires a relatively simple control system and is common for smaller UAVs. Multirotor designs with 6 or more rotors is more common with larger UAVs, where redundancy is prioritized.
Besides the traditional piston engine, the Wankel rotary engine is used by some drones. This type offers high power output for lower weight, with quieter and more vibration-free running. Claims have also been made for improved reliability and greater range.
Small drones mostly use lithium-polymer batteries (Li-Po), while some larger vehicles have adopted the hydrogen fuel cell. The energy density of modern Li-Po batteries is far less than gasoline or hydrogen. However electric motors are cheaper, lighter and quieter. Complex multi-engine, multi-propeller installations are under development with the goal of improving aerodynamic and propulsive efficiency. For such complex power installations, Battery elimination circuitry (BEC) may be used to centralize power distribution and minimize heating, under the control of a Microcontroller (MCU).
Sub-1g microUAVs inspired by flies, albeit using a power tether, have been able to "land" on vertical surfaces. Other projects mimic the flight of beetles and other insects.
Modern system hardware for UAV control is often called the flight controller (FC), flight controller board (FCB) or autopilot. Common UAV-systems control hardware typically incorporate a primary microprocessor, a secondary or failsafe processor, and sensors such as accelerometers, gyroscopes, magnetometers, and barometers into a single module.
In 2024 EASA agreed on the first certification basis for a UAV flight controller in compliance with the ETSO-C198 for Embention's autopilot. The certification of the UAV flight control systems aims to facilitate the integration of UAVs within the airspace and the operation of drones in critical areas.
Non-cooperative sensors are able to detect targets autonomously so they are used for separation assurance and collision avoidance.
Degrees of freedom (DOF) refers to both the amount and quality of sensors on board: 6 DOF implies 3-axis gyroscopes and accelerometers (a typical inertial measurement unit IMU), 9 DOF refers to an IMU plus a compass, 10 DOF adds a barometer and 11 DOF usually adds a GPS receiver.
In addition to the navigation sensors, the UAV (or UAS) can be also equipped with monitoring devices such as: RGB, multispectral, hyper-spectral cameras or Lidar, which may allow providing specific measurements or observations.
UAVs are real-time systems that require high-frequency to changing sensor data. As a result, UAVs rely on single-board computers for their computational needs. Examples of such single-board computers include , BeagleBoard, etc. shielded with NavIO, PXFMini, etc. or designed from scratch such as NuttX, preemptive-RT Linux, Xenomai, Orocos-Robot Operating System or DDS-ROS 2.0.
+ Flight stack overview | |||
Firmware | Time-critical | From machine code to processor execution, memory access | ArduCopter-v1, PX4 |
Middleware | Time-critical | Flight control, navigation, radio management | PX4, Cleanflight, ArduPilot |
Operating system | Computer-intensive | Optical flow, obstacle avoidance, SLAM, decision-making | ROS, Nuttx, Linux distributions, Microsoft IOT |
Due to the open-source nature of UAV software, they can be customized to fit specific applications. For example, researchers from the Technical University of Košice have replaced the default control algorithm of the PX4 autopilot.
In most modern UAV applications, video transmission is required. So instead of having separate links for C&C, telemetry and video traffic, a broadband link is used to carry all types of data. These broadband links can leverage quality of service techniques and carry TCP/IP traffic that can be routed over the Internet.
The radio signal from the operator side can be issued from either:
Modern networking standards have explicitly considered drones and therefore include optimizations. The 5G standard has mandated reduced user plane latency to 1ms while using ultra-reliable and low-latency communications.
UAV-to-UAV coordination supported by Remote ID communication technology. Remote ID messages (containing the UAV coordinates) are broadcast and can be used for collision-free navigation.
One approach to quantifying autonomous capabilities is based on OODA loop terminology, as suggested by a 2002 US Air Force Research Laboratory report, and used in the table on the right.
Full autonomy is available for specific tasks, such as airborne refueling or ground-based battery switching.
Other functions available or under development include; collective flight, real-time collision avoidance, wall following, corridor centring, simultaneous localization and mapping and Swarm robotics, cognitive radio and machine learning. In this context, computer vision can play an important role for automatically ensuring flight safety.
UAVs can also implement perching on a flat vertical surface.
Because of their small size, low weight, low vibration and high power to weight ratio, Wankel rotary engines are used in many large UAVs. Their engine rotors cannot seize; the engine is not susceptible to shock-cooling during descent and it does not require an enriched fuel mixture for cooling at high power. These attributes reduce fuel usage, increasing range or payload.
Proper drone cooling is essential for long-term drone endurance. Overheating and subsequent engine failure is the most common cause of drone failure.
Hydrogen fuel cells, using hydrogen power, may be able to extend the endurance of small UAVs, up to several hours.
Micro air vehicles endurance is so far best achieved with flapping-wing UAVs, followed by planes and multirotors standing last, due to lower Reynolds number.
Solar-electric UAVs, a concept originally championed by the AstroFlight Sunrise in 1974, have achieved flight times of several weeks.
Solar-powered atmospheric satellites ("atmosats") designed for operating at altitudes exceeding 20 km (12 miles, or 60,000 feet) for as long as five years could potentially perform duties more economically and with more versatility than low Earth orbit satellites. Likely applications include for weather monitoring, disaster recovery, Earth imaging and communications.
Electric UAVs powered by microwave power transmission or laser power beaming are other potential endurance solutions.
Another application for a high endurance UAV would be to "stare" at a battlefield for a long interval (ARGUS-IS, Gorgon Stare, Integrated Sensor Is Structure) to record events that could then be played backwards to track battlefield activities.
The delicacy of the British PHASA-35 military drone (at a late stage of development) is such that traversing the first turbulent twelve miles of atmosphere is a hazardous endeavor. It has, however, remained on station at 65,000 feet for 24 hours. Airbus' Zephyr in 2023 has attained 70,000 feet and flown for 64 days; 200 days aimed at. This is sufficiently close enough to near-space for them to be regarded in "pseudo-satellites" as regards to their operational capabilities.
Individual reliability covers robustness of flight controllers, to ensure safety without excessive redundancy to minimize cost and weight. Besides, dynamic assessment of flight envelope allows damage-resilient UAVs, using Nonlinear system with ad hoc designed loops or neural networks. UAV software liability is bending toward the design and certifications of crewed avionics software.
Swarm resilience involves maintaining operational capabilities and reconfiguring tasks given unit failures.
There are numerous civilian, commercial, military, and aerospace applications for UAVs. These include:
In the early 2010s, Israeli companies mainly focus on small surveillance UAV systems, and by the number of drones, Israel exported 60.7% (2014) of UAVs on the market while the United States exported 23.9% (2014). Between 2010 and 2014, there were 439 drones exchanged compared to 322 in the five years previous to that, among these only small fraction of overall trade – just 11 (2.5%) of the 439 are armed drones. The US alone operated over 9,000 military UAVs in 2014; among them more than 7000 are RQ-11 Raven . Since 2010, Chinese drone companies have begun to export large quantities of drones to the global military market. Of the 18 countries that are known to have received military drones between 2010 and 2019, the top 12 all purchased their drones from China. The shift accelerated in the 2020s due to China's advancement in drone technologies and manufacturing, compounded by market demand from the Russian invasion of Ukraine and the Israel-Gaza conflict.
For intelligence and reconnaissance missions, the inherent stealth of micro UAV flapping-wing , imitating birds or insects, offers potential for covert surveillance and makes them difficult targets to bring down.
Unmanned surveillance and reconnaissance aerial vehicle are used for reconnaissance, attack, demining, and target practice.
Following the 2022 Russian invasion of Ukraine a dramatic increase in UAV development took place with Ukraine creating the Brave1 platform to promote rapid development of innovative systems.
As of May 2021, 873,576 UAVs had been registered with the US FAA, of which 42% were categorized as commercial and 58% as recreational. 2018 NPD point to consumers increasingly purchasing drones with more advanced features with 33 percent growth in both the $500+ and $1000+ market segments.
The civil UAV market is relatively new compared to the military one. Companies are emerging in both developed and developing nations at the same time. Many early-stage startups have received support and funding from investors, as is the case in the United States, and from government agencies, as is the case in India. Some universities offer research and training programs or degrees. Private entities also provide online and in-person training programs for both recreational and commercial UAV use.
Consumer drones are widely used by police and military organizations worldwide because of the cost-effective nature of consumer products. Since 2018, the Israeli military have used DJI UAVs for light reconnaissance missions. DJI drones have been used by Chinese police in Xinjiang since 2017 and American police departments nationwide since 2018. Both Ukraine and Russia used commercial DJI drones extensively during the Russian invasion of Ukraine. These civilian DJI drones were sourced by governments, hobbyists, international donations to Ukraine and Russia to support each side on the battlefield, and were often flown by drone hobbyists recruited by the armed forces. The prevalence of DJI drones was attributable to their market dominance, affordability, high performance, and reliability.
Drones can also be used for racing, either with or without VR functionality.
These activities can be completed with different measurements, such as photogrammetry, thermography, multispectral images, 3D field scanning, and normalized difference vegetation index maps.
The use of UAVs is also being investigated to help detect and fight wildfires, whether through observation or launching pyrotechnic devices to start Controlled burn.
UAVs are also now widely used to survey wildlife such as nesting seabirds, seals and even wombat burrows.Old JM, Lin S H, Franklin MJM (2019). Mapping out bare-nosed wombat ( Vombatus ursinus) burrows with the use of a drone. BMC Ecology. 19:39. DOI: 10.1186/s12898-019-0257-5
Drones caused significant disruption at Gatwick Airport during December 2018, needing the deployment of the British Army.
In the United States, flying close to a wildfire is punishable by a maximum $25,000 fine. Nonetheless, in 2014 and 2015, firefighting air support in California was hindered on several occasions, including at the Lake Fire and the North Fire. In response, California legislators introduced a bill that would allow firefighters to disable UAVs which invaded restricted airspace. The FAA later required registration of most UAVs.
The interest in UAVs cyber security has been raised greatly after the Predator UAV video stream hijacking incident in 2009, where Islamic militants used cheap, off-the-shelf equipment to stream video feeds from a UAV. Another risk is the possibility of hijacking or jamming a UAV in flight. Several security researchers have made public some vulnerabilities in commercial UAVs, in some cases even providing full source code or tools to reproduce their attacks. At a workshop on UAVs and privacy in October 2016, researchers from the Federal Trade Commission showed they were able to hack into three different consumer and noted that UAV manufacturers can make their UAVs more secure by the basic security measures of encrypting the Wi-Fi signal and adding password protection.
The use of unmanned aerial vehicles is becoming increasingly regulated by the civil aviation authorities of individual countries. Regulatory regimes can differ significantly according to drone size and use. The International Civil Aviation Organization (ICAO) began exploring the use of drone technology as far back as 2005, which resulted in a 2011 report. France was among the first countries to set a national framework based on this report and larger aviation bodies such as the FAA and the EASA quickly followed suit. In 2021, the FAA published a rule requiring all commercially used UAVs and all UAVs regardless of intent weighing 250g or more to participate in Remote ID, which makes drone locations, controller locations, and other information public from takeoff to shutdown; this rule has since been challenged in the pending federal lawsuit RaceDayQuads v. FAA.
By providing this assurance to customers, the Class Identification Label helps to increase confidence in drone technology and encourages wider adoption across industries. This, in turn, contributes to the growth and development of the drone industry and supports the integration of drones into society.
|
|