In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quantum mechanics, while generalizations of or departures from unitarity are part of speculations about theories that may go beyond quantum mechanics. A unitarity bound is any inequality that follows from the unitarity of the evolution operator, i.e. from the statement that time evolution preserves inner products in Hilbert space.
The probability to get a particular measured result depends on the probability amplitude, given by the inner product of the physical state with the basis vectors that diagonalize the measurement operator. For a physical state that is measured after it has evolved in time, the probability amplitude can be described either by the inner product of the physical state after time evolution with the relevant basis vectors, or equivalently by the inner product of the physical state with the basis vectors that are evolved backwards in time. Using the time evolution operator , we have:Paris, M. G. (2012). The modern tools of quantum mechanics. The European Physical Journal Special Topics, 203(1), 61-86.
But by definition of Hermitian conjugation, this is also:
\left\langle \phi_i \left| e^{-i\hat{H}t/\hbar} \psi \right.\right\rangle = \left\langle\left. \phi_i \left( e^{-i\hat{H}t/\hbar}\right)^{\dagger} \right| \psi \right\rangle = \left\langle\left. \phi_i e^{-i\hat{H}^{\dagger}(-t)/\hbar} \right| \psi \right\rangle
Since these equalities are true for every two vectors, we get
Since by Born rule the norm determines the probability to get a particular result in a measurement, unitarity together with the Born rule guarantees the sum of probabilities is always one. Furthermore, unitarity together with the Born rule implies that the measurement operators in Heisenberg picture indeed describe how the measurement results are expected to evolve in time.
The S-matrix can be written as:
Unitarity of the S-matrix:
is then equivalent to:
The left-hand side is twice the imaginary part of the S-matrix. In order to see what the right-hand side is, let us look at any specific element of this matrix, e.g. between some initial state and final state , each of which may include many particles. The matrix element is then:
where {Ai} is the set of possible on-shell states - i.e. momentum states of particles (or bound complex of particles) at infinity.
Thus, twice the imaginary part of the S-matrix, is equal to a sum representing products of contributions from all the scatterings of the initial state of the S-matrix to any other physical state at infinity, with the scatterings of the latter to the final state of the S-matrix. Since the imaginary part of the S-matrix can be calculated by appearing in intermediate states of the , it follows that these virtual particles must only consist of real particles that may also appear as final states. The mathematical machinery which is used to ensure this includes gauge symmetry and sometimes also Faddeev–Popov ghosts.
Similar unitarity bounds imply that the amplitudes and cross section cannot increase too much with energy or they must decrease as quickly as a certain formula dictates. For example, Froissart bound says that the total cross section of two particles scattering is bounded by , where is a constant, and is the square of the center-of-mass energy. (See Mandelstam variables)
|
|