The twisted nematic effect ( TN effect) was a major technological breakthrough that made the manufacture of large, thin liquid crystal displays practical and cost competitive. Unlike earlier flat-panel displays, TN cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN effect such as IPS panel (IPS) or vertical alignment (VA).
Many monochrome alphanumerical displays without picture information still use TN LCDs.
TN displays benefit from fast response times and less smearing than other liquid crystal display technologies, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Viewing the display from above whitens colors, and viewing the display from below dims colors.
To display information with a twisted nematic liquid crystal, transparent Electrode are structured by photolithography to form a matrix or other pattern of electrodes, such as the seven-segment display used in low-information content applications like Digital watch or calculators. Only one of the electrodes has to be patterned in this way, the other can remain continuous ( common electrode). If more complex data or graphics information have to be displayed, a matrix arrangement of electrodes is used. Because of this, voltage-controlled addressing of dot-matrix displays, such as in LCD screens for or LCD television, is more complex than with segmented electrodes. For a matrix of limited resolution or for a slow-changing display on even a large matrix panel, a passive grid of electrodes is sufficient to implement passive matrix addressing, provided that there are independent electronic drivers for each row and column. A high-resolution matrix LCD with required fast response (e.g. for animated graphics and/or video) necessitates integration of additional non-linear electronic elements into each picture element (pixel) of the display (e.g., thin-film diodes, TFDs, or thin-film transistors, TFTs) in order to allow active matrix addressing of individual picture elements without crosstalk (unintended activation of non-addressed pixels).
The following illustrations show the OFF and ON states of a single pixel (which could instead be a segment of a character) of a twisted nematic light modulator liquid crystal display operating in the "normally white" mode, i.e., a mode in which light is transmitted when no electrical field is applied to the liquid crystal:
Electric current is only needed to charge and discharge the capacitance of the corresponding LC cell, which happens only when the applied voltage changes. Current isn't needed to sustain the electric field, because no current (ideally) flows through the liquid crystal layer. Thus, LCDs require very little Electric power.
However, the electric field's direction may need to be periodically reversed during the ON state by using an alternating voltage for "AC operation", because keeping the electric field in only one direction for too long during the ON state (or having a DC component as small as 50 mV in the AC voltage) may cause electrochemical reactions which reduce the cell's life.
In 1964, RCA's George H. Heilmeier along with Louis Zanoni and chemist Lucian Barton discovered that certain liquid crystals could be switched between a transparent state and a highly scattering opaque one with the application of electric current. The scattering was primarily forward, into the crystal, as opposed to towards the light source. By placing a reflector on the far side of the crystal, the incident light could be turned on or off electrically, creating what Heilmeier dubbed dynamic scattering. In 1965 Joseph Castellano and Joel Goldmacher, organic chemists, sought crystals that remained in the fluid state at room temperature. Within six months they had found a number of candidates, and with further development, RCA was able to announce the first liquid crystal displays in 1968.
Although successful, the dynamic scattering display required constant current flow through the device, as well as relatively high voltages. This made them unattractive for low-power situations, where many of these sorts of displays were being used. Not being self-lit, LCDs also required external lighting if they were going to be used in low-light situations, which made existing display technologies even more unattractive in overall power terms. A further limitation was the requirement for a mirror, which limited the viewing angles. The RCA team was aware of these limitations, and continued development of a variety of technologies.
One of these potential effects had been discovered by Heilmeier in 1964. He was able to get organic dyes to attach themselves to the liquid crystals, and they would stay in position when pulled into alignment by an external field. When switched from one alignment to the other, the dye was either visible or hidden, resulting in two colored states called the guest-host effect. Work on this approach stopped when the dynamic scattering effect had been demonstrated successfully.
Wolfgang Helfrich, a physicist who joined RCA in 1967, became interested in Mauguin's twisted structure and thought it might be used to create an electronic display. However RCA showed little interest because they felt that any effect that used two polarizers would also have a large amount of light absorption, requiring it to be brightly lit. In 1970, Helfrich left RCA and joined the Central Research Laboratories of Hoffmann-LaRoche in Switzerland, where he teamed up with Martin Schadt, a solid-state physicist. Schadt built a sample with electrodes and a twisted version of a liquid-crystal material called PEBAB (p-ethoxybenzylidene-p'-aminobenzonitrile), which Helfrich had reported in prior studies at RCA, as part of their guest-host experiments. When voltage is applied, PEBAB aligns itself along the field, breaking the twisting structure and the redirection of the polarization, making the cell turn opaque.
When news of the demonstration reached Hoffmann-LaRoche, Helfrich and Schadt immediately pushed for a patent, which was filed on 4 December 1970. Their formal results were published in Applied Physics Letters on 15 February 1971. In order to demonstrate the feasibility of the new effect for displays, Schadt fabricated a 4-digit display panel in 1972.
Fergason published a similar patent in the US on either 9 February 1971 or 22 April 1971. This was two months after the Swiss patent was filed and set the stage for a three-year legal confrontation that was settled out of court. In the end, all the parties received a share of what would become many millions of dollars in royalties.
This work, in turn, led to the discovery of an entirely different class of nematic crystals by Ludwig Pohl, Rudolf Eidenschink and their colleagues at Merck KGaA in Darmstadt, called cyanophenylcyclohexanes. They quickly became the basis of almost all LCDs, and remain a major part of Merck's business today. "Merck Annual Report, 2004"
TN effect
Patent battle
Commercial development of liquid crystal materials
See also
Further reading
|
|