A tank is an armoured fighting vehicle intended as a primary offensive weapon in Front line Land warfare. Tank designs are a balance of heavy firepower, strong Vehicle armour, and battlefield mobility provided by Continuous track and a powerful engine; their main armament is often mounted within a Gun turret. They are a mainstay of modern 20th and 21st century ground forces and a key part of combined arms combat.
Modern tanks are versatile mobile land whose main armament is a large-calibre tank gun mounted in a rotating gun turret, supplemented by or other ranged weapons such as anti-tank guided missiles or . They have heavy vehicle armour which provides protection for the crew, the vehicle's munition storage, fuel tank and propulsion systems. The use of tracks rather than wheels provides improved operational mobility which allows the tank to overcome rugged terrain and adverse conditions such as mud and ice/snow better than wheeled vehicles, and thus be more flexibly positioned at advantageous locations on the battlefield. These features enable the tank to perform in a variety of intense combat situations, simultaneously both offensively (with direct fire from their powerful main gun) and defensively (as fire support and defilade for friendly troops due to the near invulnerability to common infantry and good resistance against heavier weapons, although anti-tank weapons used in 2022, some of them man-portable, have demonstrated the ability to destroy older generations of tanks with single shots), all while maintaining the mobility needed to exploit changing tactical situations.von Senger and Etterlin (1960), The World's armoured Fighting Vehicles, p. 9. Fully integrating tanks into modern military forces spawned a new era of combat called armoured warfare.
Until the invention of the main battle tank, tanks were typically categorized either by weight class (tankette, light tank, medium tank, heavy tank or ) or doctrinal purpose (breakthrough-, cavalry tank, infantry tank, Cruiser tank, antinfantry-, antitank-, operational-, qualitative reinforcement-, combined arms-, special operations-, or reconnaissance tanks). Some are larger and more thickly armoured and with large guns, while others are smaller, lightly armoured, and equipped with a smaller caliber and lighter gun. These smaller tanks move over terrain with speed and agility and can perform a reconnaissance role in addition to engaging hostile targets. The smaller, faster tank would not normally engage in battle with a larger, heavily armoured tank, except during a surprise flanking manoeuvre.
He incorrectly added, "and the name has now been adopted by all countries in the world." Tanks 1914–1918: The Log Book of a Pioneer. Hodder & Stoughton, 1919, p. 39
Lieutenant-Colonel Ernest Swinton, who was secretary to the meeting, says that he was instructed to find a non-committal word when writing his report of the proceedings. In the evening he discussed it with a fellow officer, Lt-Col Walter Dally Jones, and they chose the word "tank". "That night, in the draft report of the conference, the word 'tank' was employed in its new sense for the first time." Eye-Witness, And the Origin of the Tanks; Major-General Sir Ernest D. Swinton; Doubleday, Doran & Co., 1933, p. 161 Swinton's Notes on the Employment of Tanks, in which he uses the word throughout, was published in January 1916.
In July 1918, Popular Science Monthly reported:
(*F.J. Gardiner, F.R.Hist.S.)
D'Eyncourt's account differs from Swinton's and Tritton's:
This appears to be an imperfect recollection. He says that the name problem arose "when we shipped the first two vehicles to France the following year" (August 1916), but by that time the name "tank" had been in use for eight months. The tanks were labelled "With Care to Petrograd," but the belief was encouraged that they were a type of snowplough.
Tanks of the interwar period evolved into the much larger and more powerful designs of World War II. Important new concepts of armoured warfare were developed; the Soviet Union launched the first mass tank/air attack at Khalkhin Gol (Nomonhan) in August 1939,Coox (1985), p. 579, 590, 663 and later developed the T-34, one of the predecessors of the main battle tank. Less than two weeks later, Germany began their large-scale armoured campaigns that would become known as blitzkrieg ("lightning war") – massed concentrations of tanks combined with motorized and mechanized infantry, artillery and air power designed to break through the enemy front and collapse enemy resistance.
The widespread introduction of high-explosive anti-tank warheads during the second half of World War II led to lightweight infantry-carried anti-tank weapons such as the Panzerfaust, which could destroy some types of tanks. Tanks in the Cold War were designed with these weapons in mind, and led to greatly improved armour types during the 1960s, especially composite armour. Improved engines, transmissions and suspensions allowed tanks of this period to grow larger. Aspects of gun technology changed significantly as well, with advances in shell design and aiming technology.
During the Cold War, the main battle tank concept arose and became a key component of modern armies. In the 21st century, with the increasing role of asymmetrical warfare and the end of the Cold War, that also contributed to the increase of cost-effective anti-tank rocket propelled grenades (RPGs) worldwide and its successors, the ability of tanks to operate independently has declined. Modern tanks are more frequently organized into combined arms units which involve the support of infantry, who may accompany the tanks in infantry fighting vehicles, and supported by reconnaissance or ground-attack aircraft.
During the 119 BC Battle of Mobei of the Han–Xiongnu War, the Han dynasty general Wei Qing led his army through a fatiguing expeditionary march across the Gobi desert only to find Yizhixie chanyu's main force waiting to encircle them on the other side. Using armored heavy wagons known as "Wu Gang Wagon" (Chinese language: 武剛車) in ring formations that provided Chinese Archery, crossbowmen and infantry protection from the Xiongnu's powerful cavalry charges, and allowed Han troops to utilize their ranged weapons' advantages of precision. This forced a stalemate and allowed time for his troops to recover strength, before using the cover of a sandstorm to launch a counteroffensive which overran the .
Many sources imply that Leonardo da Vinci and H. G. Wells in some way foresaw or "invented" the tank. Leonardo's late-15th-century drawings of what some describe as a "tank" show a man-powered, wheeled vehicle surrounded by cannons. However, the human crew would have difficulty moving the heavy vehicle over long distances, while usage of animals was problematic in a space so confined. In the 15th century, Jan Žižka built armoured wagons known as ‘ Wagenburg’ containing cannons and used them effectively in several battles during the Hussite Wars. The continuous "Continuous track" arose from attempts to improve the mobility of wheeled vehicles by spreading their weight, reducing ground pressure, and increasing their traction. Experiments can be traced back as far as the 17th century, and by the late nineteenth they existed in various recognizable and practical forms in several countries.
It is frequently claimed that Richard Lovell Edgeworth created a caterpillar track. It is true that in 1770 he patented a "machine, that should carry and lay down its own road", but this was Edgeworth's choice of words. His own account in his autobiography is of a horse-drawn wooden carriage on eight retractable legs, capable of lifting itself over high walls. The description bears no similarity to a caterpillar track.Edgeworth, R. & E. Memoirs of Richard Lovell Edgeworth, 1820, pp. 164–66 Armoured trains appeared in the mid-19th century, and various armoured steam and petrol-engined vehicles were also proposed.
The machines described in Wells's 1903 short story The Land Ironclads are a step closer, insofar as they are armour-plated, have an internal power plant, and are able to cross trenches. Some aspects of the story foresee the tactical use and impact of the tanks that later came into being. However, Wells's vehicles were driven by steam and moved on , technologies that were already outdated at the time of writing. After seeing British tanks in 1916, Wells denied having "invented" them, writing, "Yet let me state at once that I was not their prime originator. I took up an idea, manipulated it slightly, and handed it on." It is, though, possible that one of the British tank pioneers, Ernest Swinton, was subconsciously or otherwise influenced by Wells's tale.Harris, J.P. Men, Ideas, and Tanks. Manchester University Press, 1995. p. 38Gannon, Charles E. Rumors of War and Infernal Machines: Liverpool University Press, 2003. p. 67
The first combinations of the three principal components of the tank appeared in the decade before World War One. In 1903, Captain Léon René Levavasseur of the French artillery proposed mounting a field gun in an armoured box on tracks. Major William E. Donohue, of the British Army's Mechanical Transport Committee, suggested fixing a gun and armoured shield on a British type of track-driven vehicle. The Devil's Chariots: The Birth and Secret Battles of the First Tanks John Glanfield (Sutton Publishing, 2001) The first armoured car was produced in Austria in 1904. However, all were restricted to rails or reasonably passable terrain. It was the development of a practical caterpillar track that provided the necessary independent, all-terrain mobility.
In a memorandum of 1908, Antarctic explorer Robert Falcon Scott presented his view that man-hauling to the South Pole was impossible and that motor traction was needed.RF Scott (1908) The Sledging Problem in the Antarctic, Men versus Motors Snow vehicles did not yet exist, however, and so his engineer Reginald Skelton developed the idea of a caterpillar track for snow surfaces.Roland Huntford (2003) Scott and Amundsen. Their Race to the South Pole. The Last Place on Earth. Abacus, London, p. 224 These tracked motors were built by the Wolseley Motors in Birmingham and tested in Switzerland and Norway, and can be seen in action in Herbert Ponting's 1911 documentary film of Scott's Antarctic Terra Nova Expedition. Scott died during the expedition in 1912, but expedition member and biographer Apsley Cherry-Garrard credited Scott's "motors" with the inspiration for the British World War I tanks, writing: "Scott never knew their true possibilities; for they were the direct ancestors of the 'tanks' in France".
In 1911, a Lieutenant Engineer in the Austrian Army, Günther Burstyn, presented to the Austrian and Prussian War Ministries plans for a light, three-man tank with a gun in a revolving turret, the so-called Burstyn-Motorgeschütz. Gunther Burstyn Angwetter, D. & E. (Verlag Der Österreichischen Akademie Der Wissenschaften, 2008) In the same year an Australian civil engineer named Lancelot de Mole submitted a basic design for a tracked, armoured vehicle to the British War Office. In Russia, Vasiliy Mendeleev designed a tracked vehicle containing a large naval gun. Russian tanks, 1900–1970 The Complete Illustrated History of Soviet Armoured Theory and Design John Milsom (Stackpole Books, 1971) All of these ideas were rejected and, by 1914, forgotten (although it was officially acknowledged after the war that de Mole's design was at least the equal to the initial British tanks). Various individuals continued to contemplate the use of tracked vehicles for military applications, but by the outbreak of the War no one in a position of responsibility in any army seems to have given much thought to tanks.
However leading roles were played by Lt Walter Gordon Wilson R.N. who designed the gearbox and developed practical tracks and by William Tritton whose agricultural machinery company, William Foster & Co. in Lincoln, Lincolnshire, England built the . On 22 July 1915, a commission was placed to design a machine that could cross a trench 4 ft wide. Secrecy surrounded the project with the designers locking themselves in a room at the White Hart Hotel in Lincoln. The committee's first design, Little Willie, ran for the first time in September 1915 and served to develop the form of the track but an improved design, better able to cross trenches, swiftly followed and in January 1916 the prototype, nicknamed "Mother", was adopted as the design for future tanks. The first order for tanks was placed on 12 February 1916, and a second on 21 April. Fosters built 37 (all "male"), and Metro-Cammell, of Birmingham, 113 (38 "male" and 75 "female"), a total of 150.Glanfield, Appendix 2. Production models of Male tank tanks (armed with naval cannon and machine guns) and Female tank (carrying only machine-guns) would go on to fight in history's first tank action at the Somme in September 1916.McMillan, N: Locomotive Apprentice at the North British Locomotive Company Ltd Glasgow Plateway Press 1992 Great Britain produced about 2,600 tanks of various types during the war.Glanfield, Devil's Chariots The first tank to engage in battle was designated D1, a British Mark I Male, during the Battle of Flers-Courcelette (part of the wider Somme offensive) on 15 September 1916. Bert Chaney, a nineteen-year-old signaller with the 7th London Territorial Battalion, reported that "three huge mechanical monsters such as he had never seen before" rumbled their way onto the battlefield, "frightening the Jerries out of their wits and making them scuttle like frightened rabbits." The Mammoth Book of How it Happened, Robinson Publishing, 2000, , pp. 337–38 When the news of the first use of the tanks emerged, Prime Minister David Lloyd George commented,
The following year, the French pioneered the use of a full 360° rotation gun turret in a tank for the first time, with the creation of the Renault FT light tank, with the turret containing the tank's main armament. In addition to the traversable turret, another innovative feature of the FT was its engine located at the rear. This pattern, with the gun located in a mounted turret and the engine at the back, has become the standard for most succeeding tanks across the world even to this day. The FT was the most numerous tank of the war; over 3,000 were made by late 1918.
Although tank tactics developed rapidly during the war, piecemeal deployments, mechanical problems, and poor mobility limited the military significance of the tank in World War I, and the tank did not fulfil its promise of rendering trench warfare obsolete. Nonetheless, it was clear to military thinkers on both sides that tanks in some way could have a significant role in future conflicts.Willmott (2003), First World War
In the Second World War only Germany would initially put the theory into practice on a large scale, and it was their superior tactics and French blunders, not superior weapons, that made the "blitzkrieg" so successful in May 1940. For information regarding tank development in this period, see tank development between the wars.
Germany, Italy and the Soviet Union all experimented heavily with tank warfare during their clandestine and "volunteer" involvement in the Spanish Civil War, which saw some of the earliest examples of successful mechanized combined arms —such as when Republican troops, equipped with Soviet-supplied tanks and supported by aircraft, eventually routed Italian troops fighting for the Nationalists in the seven-day Battle of Guadalajara in 1937.Time (1937), Chewed up However, of the nearly 700 tanks deployed during this conflict, only about 64 tanks representing the Franco faction and 331 from the Republican side were equipped with cannon, and of those 64 nearly all were World War I vintage Renault FT tanks, while the 331 Soviet supplied machines had 45mm main guns and were of 1930s manufacture.Manrique p. 311, 321, 324 The balance of Nationalist tanks were machine gun armed. The primary lesson learned from this war was that machine gun armed tanks had to be equipped with cannon, with the associated armour inherent to modern tanks.
The five-month-long war between the Soviet Union and the Japanese 6th Army at Khalkhin Gol (Nomonhan) in 1939 brought home some lessons. In this conflict, the Soviets fielded over two thousand tanks, to the around 73 cannon armed tanks deployed by the Japanese,Goldman p. 19 the major difference being that Japanese armour were equipped with diesel engine engines as opposed to the Russian tanks equipped with petrol engines.Coox p. 300, 318, 437 After General Georgy Zhukov inflicted a defeat on the Japanese 6th Army with his massed combined tank and air attack, the Soviets learned a lesson on the use of gasoline engines, and quickly incorporated those newly found experiences into their new T-34 medium tank during World War II.Coox 998
Prior to World War II, the tactics and strategy of deploying tank forces underwent a revolution. In August 1939, Soviet General Georgy Zhukov used the combined force of tanks and airpower at Nomonhan against the Japanese 6th Army;Coox p. 579, 590, 663 Heinz Guderian, a tactical theoretician who was heavily involved in the formation of the first independent German tank force, said "Where tanks are, the front is", and this concept became a reality in World War II.Cooper and Lucas (1979), Panzer: The armoured Force of the Third Reich, p. 9 Guderian's armoured warfare ideas, combined with Germany's existing doctrines of Bewegungskrieg ("maneuver warfare") and infiltration tactics from World War I, became the basis of blitzkrieg in the opening stages of World War II.
In accordance with blitzkrieg methods, German tanks bypassed enemy strongpoints and could radio for close air support to destroy them, or leave them to the infantry. A related development, motorized infantry, allowed some of the troops to keep up with the tanks and create highly mobile combined arms forces. The defeat of a major military power within weeks shocked the rest of the world, spurring tank and anti-tank weapon development.
The North African Campaign also provided an important battleground for tanks, as the flat, desolate terrain with relatively few obstacles or urban environments was ideal for conducting mobile armoured warfare. However, this battlefield also showed the importance of logistics, especially in an armoured force, as the principal warring armies, the German Afrika Korps and the British Eighth Army, often outpaced their supply trains in repeated attacks and counter-attacks on each other, resulting in complete stalemate. This situation would not be resolved until 1942, when during the Second Battle of El Alamein, the Afrika Korps, crippled by disruptions in their supply lines, had 95% of its tanks destroyed and was forced to retreat by a massively reinforced Eighth Army, the first in a series of defeats that would eventually lead to the surrender of the remaining Axis forces in Tunisia.
Tank Chassis were modified to produce , mobile rocket artillery, and combat engineering vehicles for tasks including demining and bridge. Specialized self-propelled guns, most of which could double as , were also both developed by the Germans—with their Sturmgeschütz, Panzerjäger and Jagdpanzer vehicles—and the Samokhodnaya ustanovka families of AFV's for the Soviets: such turretless, casemate-style and were less complex, stripped down tanks carrying heavy guns, solely firing forward. The firepower and low cost of these vehicles made them attractive but as manufacturing techniques improved and larger turret rings made larger tank guns feasible, the gun turret was recognized as the most effective mounting for the main gun to allow movement in a different direction from firing, enhancing tactical flexibility.
Medium tanks of World War II evolved into the main battle tank (MBT) of the Cold War and took over the majority of tank roles on the battlefield. This gradual transition occurred in the 1950s and 1960s due to anti-tank guided missiles, sabot ammunition and high-explosive anti-tank warheads. World War II had shown that the speed of a light tank was no substitute for armour & firepower and medium tanks were vulnerable to newer weapon technology, rendering them obsolete.
In a trend started in World War II, economies of scale led to serial production of progressively upgraded models of all major tanks during the Cold War. For the same reason many upgraded post-World War II tanks and their derivatives (for example, the T-55 and T-72) remain in active service around the world, and even an obsolete tank may be the most formidable weapon on battlefields in many parts of the world.
Tanks and anti-tank weapons of the Cold War era saw action in a number of like the Korean War, Vietnam War, Indo-Pakistani War of 1971, Soviet–Afghan War and Arab-Israeli conflicts, culminating with the Yom Kippur War. The T-55, for example, has seen action in no fewer than 32 conflicts. In these wars the U.S. or NATO countries and the Soviet Union or China consistently backed opposing forces. Proxy wars were studied by Western and Soviet military analysts and provided a contribution to the Cold War tank development process.
Tanks were used to spearhead the initial US invasion of Iraq in 2003. As of 2005, there were 1,100 M1 Abrams used by the United States Army in the course of the Iraq War, and they have proven to have an unexpectedly high level of vulnerability to .USA Today (2005), Tank takes a beating in Iraq A relatively new type of remotely detonated mine, the explosively formed penetrator has been used with some success against American armoured vehicles (particularly the Bradley fighting vehicle). However, with upgrades to their armour in the rear, M1s have proven invaluable in fighting insurgents in urban combat, particularly at the Battle of Fallujah, where the US Marines brought in two extra brigades. Israeli Merkava tanks contain features that enable them to support infantry in low intensity conflicts (LIC) and counter-terrorism operations. Such features are the rear door and rear corridor, enabling the tank to carry infantry and embark safely; the IMI APAM-MP-T multi-purpose ammunition round, advanced C4IS systems and recently: TROPHY active protection system which protects the tank from shoulder-launched anti-tank weapons. During the Second Intifada further modifications were made, designated as "Merkava Mk. 3d Baz LIC".
Mobility may be enhanced in future tanks by the use of diesel–electric or turbine–electric series hybrid drives—first used in a primitive, gasoline-engined form with Porsche's Elefant German tank destroyer of 1943—improving fuel efficiency while reducing the size and weight of the power plant. Electric/Hybrid Electric Drive Vehicles for Military Applications, pp. 132–44 Furthermore, advances in gas turbine technology, including the use of advanced ,McDonald, Colin F., Gas Turbine Recuperator Renaissance, pp. 1–30 have allowed for reduction in engine volume and mass to less than 1 m3 and 1 metric ton, respectively, while maintaining fuel efficiency similar to that of a diesel engine.Koschier, Angelo V. and Mauch, Hagen R., Advantages of the LV100 as a Power Producer in a Hybrid Propulsion System for Future Fighting Vehicles, p. 697 In line with the new doctrine of network-centric warfare, the 2010s-era modern battle tank shows increasing sophistication in its electronics and communication systems. The future of tanks has been challenged by the proliferation of relatively inexpensive anti tank guided missiles and rockets during the Russo-Ukrainian War.
In World War I, the first tank designs focused on crossing wide trenches, requiring very long and large vehicles, such as the British Mark I; these became classified as . Tanks that fulfilled other combat roles were smaller, like the French Renault FT; these were classified as or . Many late-war and inter-war tank designs diverged from these according to new, though mostly untried, concepts for future tank roles and tactics. Tank classifications varied considerably according to each nation's own tank development, such as "cavalry tanks", "fast tanks", and "breakthrough tanks".
During World War II, many tank concepts were found unsatisfactory and discarded, mostly leaving the more multi-role tanks; these became easier to classify. Tank classes based on weight (and the corresponding transport and logistical needs) led to new definitions of heavy and light tank classes, with covering the balance of those between. The British maintained , focused on speed, and that traded speed for more armour. are tanks or other armoured fighting vehicles specifically designed to defeat enemy tanks. are armoured fighting vehicles that could combine the roles of infantry tanks and . Some tanks were converted to , specializing on close-in attacks on enemy strongholds with . As the war went on, tanks tended to become larger and more powerful, shifting some tank classifications and leading to .
Experience and technology advances during the Cold War continued to consolidate tank roles. With the worldwide adoption of the modern main battle tank designs, which favour a modular universal design, most other classifications are dropped from modern terminology. All main battle tanks tend to have a good balance of speed, armour, and firepower, even while technology continues to improve all three. Being fairly large, main battle tanks can be complemented with light tanks, armoured personnel carriers, infantry fighting vehicles or similar relatively lighter armoured fighting vehicles, typically in the roles of armoured reconnaissance, amphibious or air assault operations, or against enemies lacking main battle tanks.
A gyroscope is used to stabilise the main gun, allowing it to be effectively aimed and fired at the "short halt" or on the move. Modern tank guns are also commonly fitted with insulating to reduce gun-barrel warping caused by uneven thermal expansion, to minimise gun firing fumes entering the crew compartment and sometimes to minimise the effect of recoil on accuracy and rate of fire.
Traditionally, target detection relied on visual identification. This was accomplished from within the tank through telescope ; often, however, tank commanders would open up the hatch to view the outside surroundings, which improved situational awareness but incurred the penalty of vulnerability to sniper fire. Though several developments in target detection have taken place, these methods are still common practice. In the 2010s, more electronic target detection methods are available.
In some cases were used to confirm proper trajectory and range to a target. These spotting rifles were mounted co-axially to the main gun, and fired tracer ammunition ballistically matched to the gun itself. The gunner would track the movement of the tracer round in flight, and upon impact with a hard surface, it would give off a flash and a puff of smoke, after which the main gun was immediately fired. However this slow method has been mostly superseded by laser rangefinding equipment.
Modern tanks also use sophisticated light intensification and thermal imaging equipment to improve fighting capability at night, in poor weather and in smoke. The accuracy of modern tank guns is pushed to the mechanical limit by computerized fire-control systems. A fire-control system uses a laser rangefinder to determine the range to the target, a thermocouple, anemometer and wind vane to correct for weather effects and a muzzle referencing system to correct for gun-barrel temperature, warping and wear. Two sightings of a target with the range-finder enable calculation of the target movement vector. This information is combined with the known movement of the tank and the principles of ballistics to calculate the elevation and Aiming point that maximises the probability of hitting the target.
Usually, tanks carry smaller caliber armament for short-range defense where fire from the main weapon would be ineffective or wasteful, for example when engaging infantry, light vehicles or close air support aircraft. A typical complement of secondary weapons is a general-purpose machine gun mounted coaxial weapon with the main gun, and a heavier anti-aircraft-capable machine gun on the turret roof. Some tanks also have a hull-mounted machine gun. These weapons are often modified variants of those used by infantry, and so use the same kinds of ammunition.
In common with most unit types, tanks are subject to additional hazards in dense wooded and urban combat environments which largely negate the advantages of the tank's long-range firepower and mobility, limit the crew's detection capabilities and can restrict turret traverse. Despite these disadvantages, tanks retain high survivability against previous-generation rocket-propelled grenades aimed at the most-armoured sections.
However, as effective and advanced as armour plating has become, tank survivability against newer-generation tandem-warhead anti-tank missiles is a concern for military planners.BBC News (2006) Tough lessons for Israeli armour Tandem-warhead RPGs use two warheads to fool active protection systems; a first dummy warhead is fired first, to trigger the active defenses, with the real warhead following it. For example, the RPG-29 from the 1980s is able to penetrate the frontal hull armour of the Challenger II and also managed to damage a M1 Abrams. As well, even tanks with advanced armour plating can have their tracks or gear cogs damaged by RPGs, which may render them immobile or hinder their mobility. Despite all of the advances in armour plating, a tank with its hatches open remains vulnerable to Molotov cocktail (gasoline bombs) and grenades. Even a "buttoned up" tank may have components which are vulnerable to Molotov cocktails, such as optics, extra gas cans and extra ammunition stored on the outside of the tank.
The Russian Nakidka camouflage kit was designed to reduce the optical, thermal, infrared, and radar signatures of a tank, so that acquisition of the tank would be difficult. According to Nii Stali, the designers of Nakidka, Nakidka would reduce the probabilities of detection via "visual and near-IR bands by 30%, the thermal band by 2–3-fold, radar band by 6-fold, and radar-thermal band to near-background levels. "Nakidka" kit for protection against surveillance and precision-guided systems(archive)
Working against efforts to avoid detection is the fact that a tank is a large metallic object with a distinctive, angular silhouette that emits copious thermal imaging and engine noise. A tank that is operating in cold weather or which needs to use its radio or other communications or target-detecting electronics will need to start its engine regularly to maintain its battery power, which will create engine noise. Consequently, it is difficult to effectively camouflage a tank in the absence of some form of cover or concealment (e.g., woods) it can hull-down its hull behind. The tank becomes easier to detect when moving (typically, whenever it is in use) due to the large, distinctive auditory, vibration and thermal signature of its engine and power plant. Tank tracks and dust clouds also betray past or present tank movement.
Switched-off tanks are vulnerable to infra-red thermal imaging due to differences between the thermal conductivity and therefore heat dissipation of the metallic tank and its surroundings. At close range the tank can be detected even when powered down and fully concealed due to the heat haze above the tank and the smell of diesel or gasoline. Thermal blankets slow the rate of heat emission and some thermal camouflage nets use a mix of materials with differing thermal properties to operate in the infra-red as well as the visible spectrum.
can rapidly deploy a smoke screen that is opaque to infrared light, to hide it from the thermal viewer of another tank. In addition to using its own grenade launchers, a tank commander could call in an artillery unit to provide smoke cover. Some tanks can produce a smoke screen.
Sometimes camouflage and concealment are used at the same time. For example, a camouflage-painted and branch-covered tank (camouflage) may be hidden in a behind a hill or in a dug-in-emplacement (concealment).
Steel armour plate was the earliest type of armour. The Germans pioneered the use of face hardened steel during World War II and the Soviets also achieved improved protection with sloped armour technology. World War II developments led to the obsolescence of homogeneous steel armour with the development of shaped-charge warheads, exemplified by the Panzerfaust and bazooka infantry-carried weapons which were effective, despite some early success with spaced armour. Magnetic mines led to the development of diamagnetism paste and paint. From WWII to the modern era, troops have added improvised armour to tanks while in combat settings, such as sandbags or pieces of old armour plating.
British tank researchers took the next step with the development of Chobham armour, or more generally composite armour, incorporating and plastics in a resin matrix between steel plates, which provided good protection against HEAT weapons. High-explosive squash head warheads led to spall armour linings, and kinetic energy penetrators led to the inclusion of exotic materials like a matrix of depleted uranium into a composite armour configuration.
Reactive armour consists of small explosive-filled metal boxes that detonate when hit by the metallic jet projected by an exploding HEAT warhead, causing their metal plates to disrupt it. defeat reactive armour by causing the armour to detonate prematurely. Modern reactive armour protects itself from Tandem warheads by having a thicker front metal plate to prevent the precursor charge from detonating the explosive in the reactive armour. Reactive armours can also reduce the penetrative abilities of kinetic energy penetrators by deforming the penetrator with the metal plates on the Reactive armour, thereby reducing its effectiveness against the main armour of the tank.
Tanks have high tactical mobility and can travel over most types of terrain due to their and advanced suspension. The tracks disperse the weight of the vehicle over a large area, resulting in less ground pressure. A tank can travel at approximately across flat terrain and up to on roads, but due to the mechanical strain this places on the vehicle and the logistical strain on fuel delivery and tank maintenance, these must be considered exceptional "burst" speeds.
Tanks are susceptible to mechanical failure of engine and transmission systems, particularly at maximum burst speeds. Consequently, wheeled tank transporters and rail transport are used wherever possible for non-combat tank transport. Tank mobility is very restricted compared to wheeled armoured fighting vehicles. Most operational mobility in blitzkrieg tank operations was conducted at the pedestrian pace of , and that was only achieved on the roads of France.Deighton (1979), Blitzkrieg, From the rise of Hitler to the fall of Dunkirk, p. 180
The tank power plant evolved from predominantly petrol and adapted large-displacement aeronautical or automotive engines to . Japan was the first to begin transitioning to this engine type beginning with the Type 89B in 1934. The main advantage of diesel is their higher fuel efficiency, which allows for greater operating ranges. Diesel engines can also run on a variety of fuels, such as aviation kerosene and even gasoline. Advanced multi-fuel diesel engines have been adopted. Gas turbines are powerful per unit weight but fuel-hungry; they have been used in a few tanks, including the Soviet T-80 and American M1 Abrams.
+Tank power output and torque in context: |
are specially designed or adapted for water operations, such as by including snorkels and skirts, but they are rare in modern armies. Purpose-built amphibious assault vehicles or armoured personnel carriers are used, without tanks, in amphibious assaults. Advances such as the EFA mobile bridge and armoured vehicle-launched scissors bridges have also reduced the impediment to tank advance that rivers posed in World War II.Deighton (1979), Blitzkrieg, From the rise of Hitler to the fall of Dunkirk, pp. 234–52
Operating a tank is a team effort. For example, the loader is assisted by the rest of the crew in stowing ammunition. The driver is assisted in maintaining the automotive features.
Historically, crews have varied from two to twelve members. First World War tanks carried the crew needed to man the multiple guns and machine guns, and up to four crewmen to drive the tank: the commander drove the tank and manned the brakes, steering via orders to his gears-men; a co-driver operated the gearbox and throttle; and two gears-men, one for each track, steered by setting their side to idle, allowing the track on the other side to slew the tank to one side. Pre-World War II French tanks were noted for having a two-man crew, in which the overworked commander had to load and fire the gun in addition to commanding the tank.
With World War II the multi-turreted tanks proved impracticable, and as the single turret on a low hull design became standard, crews became standardized around a crew of four or five. In those tanks with a fifth crew member, usually three were located in the turret (as described above) while the fifth was most often seated in the hull next to the driver, and operated the hull machine gun in addition to acting as a co-driver or radio operator. Well-designed crew stations, giving proper consideration to comfort and ergonomics, are important to the combat-effectiveness of a tank, as they limit fatigue and speed up individual actions.
The characteristics of a tank are determined by the performance criteria required for the tank. The obstacles that must be traversed affect the vehicle's front and rear profiles. The types of terrain specified to be traversed determine the maximum permissible track ground pressure.
Tank design is a compromise between technological and budgetary constraints and tactical capability requirements. It is not possible to maximise firepower, protection and mobility simultaneously, while also incorporating the latest technology and being economically viable. For example, in the case of tactical capability requirements, increasing protection by adding armour will result in an increase in weight and therefore decrease in mobility; increasing firepower by installing a larger gun will force the designer team to increase armour, the therefore weight of the tank by retaining same internal volume to ensure crew efficiency during combat. In the case of the Abrams MBT which has good firepower, speed and armour, these advantages are counterbalanced by its engine's notably high fuel consumption, which ultimately reduces its range, and in a larger sense its mobility. And most enhancements add to cost.
Since the Second World War the economics of tank production, governed by the complexity of manufacture and cost and the impact of a given tank design on logistics and field maintenance capabilities, have also been accepted as important in determining how many tanks a nation can afford to field in its force structure.
Some tank designs that were fielded in significant numbers, such as Tiger I and M60A2 proved to be too complex or expensive to manufacture, and made unsustainable demands on the logistics services support of the armed forces. The affordability of the design therefore takes precedence over the combat capability requirements. Nowhere was this principle illustrated better than during the Second World War when two Allied designs, the Soviet T-34 and the US M4 Sherman, although both simple designs which accepted engineering compromises, were used successfully against more sophisticated designs by Germany that were more complex and expensive to produce, and more demanding on overstretched logistics of the Wehrmacht. Given that a tank crew will spend most of its time occupied with maintenance of the vehicle, engineering simplicity has become the primary constraint on tank design since the Second World War despite advances in mechanical, electrical and electronics technologies.
Since the Second World War, tank development has incorporated experimenting with significant mechanical changes to the tank design while focusing on technological advances in the tank's many subsystems to improve its performance. However, a number of novel designs appeared, with mixed success, including the firepower of the Soviet IT-1 and T-64, and the crew protection of the Israeli Merkava and Swedish S-tank, while for decades the US's M551 remained the only light tank deployable by parachute.
Further advancements in tank defense systems have led to the development of active protection systems, which may be classified as either:
Both these active protection systems can be found on several main battle tanks including the K2 Black Panther, the Merkava and the Leopard 2A7.
Battle of the Somme | 1916| style="text-align: right;" 49 | Tanks first used in battle |
Battle of Cambrai | 1917| style="text-align: right;" 378 | First successful use of tanks |
Second Battle of Villers-Bretonneux | 1918| style="text-align: right;" 23 | First tank vs. tank battle |
Spanish Civil War | 1936–1939| style="text-align: right;" ~700 | Interwar tanks in combat |
Invasion of Poland | 1939| style="text-align: right;" ~8,000 | Origin of " Blitzkrieg" term |
Battle of Hannut, Belgium | 1940| style="text-align: right;" ~1,200 | First large tank vs. tank battle |
Battle of France | 1940| style="text-align: right;" 5,828 | Weaker but better commanded tanks successful in combined arms operations |
Battle of Kursk | 1943| style="text-align: right;" 10,610 | Most tanks in one battle |
Battle of the Sinai | 1973| style="text-align: right;" 1,200 | Combat between main battle tanks |
|
|