A sonority hierarchy or sonority scale is a hierarchical ranking of speech (or phones). Sonority is loosely defined as the loudness of speech sounds relative to other sounds of the same pitch, length and stress, therefore sonority is often related to rankings for phones to their amplitude. For example, pronouncing the fricative [v] will produce a louder sound than the stop consonant [b], so v would rank higher in the hierarchy. However, grounding sonority in amplitude is not universally accepted. Instead, many researchers refer to sonority as the resonance of speech sounds. This relates to the degree to which production of phones results in vibrations of air particles. Thus, sounds that are described as more sonorous are less subject to masking by ambient noises.
Sonority hierarchies are especially important when analyzing syllable structure; rules about what segments may appear in syllable onset or syllable coda together, such as SSP, are formulated in terms of the difference of their sonority values. Some languages also have assimilation rules based on sonority hierarchy, for example, the Finnish potential mood, in which a less sonorous segment changes to copy a more sonorous adjacent segment (e.g. -tne- → -nne-).
| − | ||||
| − | ||||
| − | ||||
| − | ||||
| − | ||||
The labels on the left refer to distinctive features, and categories of sounds can be grouped together according to whether they share a feature. For instance, as shown in the sonority hierarchy above, vowels are considered +syllabic, whereas all consonants (including glides, liquids, nasals, etc.) are considered −syllabic. All sound categories falling under +sonorant are , whereas those falling under −sonorant are . In this way, any contiguous set of sound types may be grouped together on the basis of no more than two features (for instance, affricates and fricatives are −sonorant,).
| low vowels () | /a ə/ |
| /e o/ | |
| high vowels () / glides () | /i u j w/ (first two are close vowels, last two are semivowels) |
| Flap consonant | /ɾ/ |
| laterals | /l/ |
| Nasal consonant | /m n ŋ/ |
| voiced fricatives | /v ð z/ |
| voiceless fricatives | /f θ s/ |
| voiced plosives | /b d g/ |
| voiceless plosives | /p t k/ |
In English language, the sonority scale, from highest to lowest, is the following:
In simpler terms, the scale has members of the same group hold the same sonority from the greatest to the smallest presence of vibrations in the vocal folds. Vowels have the most vibrations, but consonants are characterized as such in part by the lack of vibrations or a break in vibrations. The top of the scale, open vowels, has the most air used for vibrations, and the bottom of the scale has the least air being used for vibrations. That can be demonstrated by putting a few fingers on one's throat and pronouncing an open vowel such as the vowel a, and then pronouncing one of the plosives (also known as Stop consonant) of the p class. For vowels, there is a consistent level pressure generated from the lungs and diaphragm, and the difference in pressure in one's body and outside the mouth is minimal. For plosive, the pressure generated from the lungs and diaphragm changes significantly, and the difference in pressure in one's body and outside the mouth is maximal before release (no air is flowing, and the vocal folds are not resisting the air flow).
More finely-nuanced hierarchies often exist within classes whose members cannot be said to be distinguished by relative sonority. In North American English, for example, the set /p t k/ has /t/ being by far the most subject to weakening when before an unstressed vowel (the usual American pronunciation has /t/ as a flap in later but normally no weakening of /p/ in caper or of /k/ in faker).
In Portuguese, intervocalic /n/ and /l/ are typically lost historically (e.g. Lat. LUNA > /lua/ 'moon', DONARE > /doar/ 'donate', COLORE > /kor/ 'color'), but /r/ remains (CERA > /sera/ 'wax'), but Romanian has transformed the intervocalic non-gemination /l/ into /r/ (SOLEM > /so̯are/ 'sun') and reduced the geminate /ll/ to /l/ (OLLA > /o̯alə/ 'pot'). It has, however, left /n/ (LUNA > /lunə/ 'moon') and /r/ (PIRA > /parə/ 'pear') unchanged. Similarly, Romance languages often have geminate /mm/ weaker than /nn/, and geminate /rr/ is often stronger than other geminates, including /pp tt kk/. In such cases, many phonologists refer not to sonority but to a more abstract notion of relative strength. The latter was once posited as universal in its arrangement, but it is now known to be language-specific.
In many languages the presence of two non-adjacent highly-sonorous elements can be a reliable indication of how many syllables are in the word; /ata/ is most likely two syllables, and many languages would deal with the sequences like /mbe/ or /lpatn/ by pronouncing them as multiple syllables, with syllabic sonorants: m̩.be and l̩.pat.n̩.
This understanding was developed from the acoustic adaptation hypothesis, which was a theory initially used to understand differences in bird songs across varying habitats. However, the theory has been applied by researchers as a base for understanding why differences are shown in speech sounds within spoken languages around the world.
A range of other additional factors have also been observed which affect the degree of sonority of a particular language such as precipitation and sexual restrictiveness. Inevitably, the patterns become more complex when considering a range of ecological factors simultaneously. Moreover, large amounts of variation are shown which may be due to patterns of migration.
|
|