Fish migration is animal migration by fish from one area or body of water to another. Many types of fish migrate on a regular basis, on time scales ranging from daily to annually or longer, and over distances ranging from a few metres to thousands of kilometres. Such migrations are usually done for better feeding or to reproduce, but in other cases the reasons are unclear.
Fish migrations involve movements of schools of fish on a scale and duration larger than those arising during normal daily activities.Dingle, Hugh and Drake, V. Alistair (2007) "What Is Migration?". BioScience, 57(2):113–121. Some particular types of migration are anadromous, in which adult fish live in the sea and migrate into fresh water to spawn; and catadromous, in which adult fish live in fresh water and migrate into salt water to spawn.
Marine forage fish often make large migrations between their spawning, feeding and nursery grounds. Their movements are associated with ocean currents and with the availability of food in different areas at different times of the year. The migratory movements may partly be linked to the fact that the fish cannot identify their own offspring and moving in this way prevents cannibalism. Some species have been described by the United Nations Convention on the Law of the Sea as highly migratory species. These are large pelagic fish that move in and out of the exclusive economic zones of different nations, and these are covered differently in the treaty from other fish.
Salmon and striped bass are well-known anadromous fish, and freshwater are catadromous fish that make large migrations. The bull shark is a euryhaline species that moves at will from fresh to salt water, and many marine fish make a diel vertical migration, rising to the surface to feed at night and sinking to lower layers of the ocean by day. Some fish such as tuna move to the north and south at different times of year following temperature gradients. The fish with the longest freshwater migration is the dourada catfish, which travels up the Amazon River. The patterns of migration are of great interest to the fishing industry. Movements of fish in fresh water also occur; often the fish swim upriver to spawn, and these traditional movements are increasingly being disrupted by the building of dams.
George S. Myers coined the following terms in a 1949 journal article:
Although these classifications originated for fish, they can apply, in principle, to any aquatic organism.
List of diadromous orders and families, and the number of known species: Supplemental Information
Capelin are a forage fish of the smelt family found in the Atlantic Ocean and Arctic Ocean oceans. In summer, they graze on dense swarms of plankton at the edge of the ice shelf. Larger capelin also eat krill and other . The capelin move inshore in large schools to spawn and migrate in spring and summer to feed in plankton rich areas between Iceland, Greenland and Jan Mayen. The migration is affected by . Around Iceland, maturing capelin make large northward feeding migrations in spring and summer. The return migration takes place from September to November. The spawning migration starts north of Iceland in December or January.
The diagram on the right shows the main spawning grounds and larval drift routes. Capelin on the way to feeding grounds is coloured green, capelin on the way back is blue, and the breeding grounds are red.
In a paper published in 2009, researchers from Iceland recount their application of an interacting particle model to the capelin stock around Iceland, successfully predicting the spawning migration route for 2008.Barbaro1 A, Einarsson B, Birnir1 B, Sigurðsson S, Valdimarsson S, Pálsson ÓK, Sveinbjörnsson S and Sigurðsson P (2009) "Modelling and simulations of the migration of pelagic fish" Journal of Marine Science, 66(5):826-838.
These high trophic level oceanodromous species undertake migrations of significant but variable distances across oceans for feeding, often on forage fish, or reproduction, and also have wide geographic distributions. Thus, these species are found both inside the exclusive economic zones and in the high seas outside these zones. They are Pelagic fish species, which means they mostly live in the open ocean and do not live near the sea floor, although they may spend part of their life cycle in nearshore waters.Pacific Fishery Management Council: Background: Highly Migratory Species
Highly migratory species can be compared with straddling stock and transboundary stock. Straddling stock range both within an EEZ as well as in the high seas. Transboundary stock range in the EEZs of at least two countries. A stock can be both transboundary and straddling.FAO (2007) Report of the FAO workshop on vulnerable ecosystems and destructive fishing in deep sea fisheries, Rome, Fisheries Report No. 829. HTML
It can be challenging to determine the population structure of highly migratory species using physical tagging. Traditional genetic markers such as short-range PCR products, microsatellites and SNP-arrays have struggled to identify population structure and distinguish fish stocks from separate ocean basins. However, population genomic research using RAD sequencing in yellowfin tuna, albacore, and wahoo has been able to distinguish populations from different ocean basins and reveal fine-scale population structure. Similar population genomics methods have also provided improved insight towards population structure in striped marlin.
Several Pacific salmon (Chinook, coho and Steelhead) have been introduced into the US Great Lakes, and have become potamodromous, migrating between their natal waters to feeding grounds entirely within fresh water.
Remarkable catadromous migrations are made by freshwater eels. Examples are the American eel and the European eel which migrate huge distances from freshwater rivers to spawn in the Sargasso Sea, and whose subsequent larvae can drift in currents for months and even years before returning to their natal rivers and streams as glass eels or elvers.
An example of a euryhaline species is the bull shark, which lives in Lake Nicaragua of Central America and the Zambezi of Africa. Both these habitats are fresh water, yet bull sharks will also migrate to and from the ocean. Specifically, Lake Nicaragua bull sharks migrate to the Atlantic Ocean and Zambezi bull sharks migrate to the Indian Ocean.
Diel vertical migration is a common behavior; many marine species move to the surface at night to feed, then return to the depths during daytime.
A number of large marine fishes, such as the tuna, migrate north and south annually, following temperature variations in the ocean. These are of great importance to fishery.
Freshwater (potamodromous) fish migrations are usually shorter, typically from lake to stream or vice versa, for spawning purposes. However, potamodromous migrations of the endangered Colorado pikeminnow of the Colorado River system can be extensive. Migrations to natal spawning grounds can easily be 100 km, with maximum distances of 300 km reported from radiotagging studies.
Sometimes fish can be dispersed by birds that eat fish eggs. They carry eggs in the digestive tracts and then deposit them in their faeces in a new place. The survival rate for fish eggs that have passed through a bird's digestive tract is low.
|
|