In knot theory, the cinquefoil knot, also known as Solomon's seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three-twist knot. It is listed as the 51 knot in the Alexander-Briggs notation, and can also be described as the (5,2)-torus knot. The cinquefoil is the closed version of the double overhand knot.
Properties
The cinquefoil is a
prime knot. Its
writhe is 5, and it is
invertible knot but not
amphichiral knot.
Its Alexander polynomial is
- ,
since is a possible Seifert surface, or because of its Conway polynomial, which is
- ,
and its
Jones polynomial is
These are the same as the Alexander, Conway, and Jones polynomials of the knot 10
132. However, the Kauffman polynomial can be used to distinguish between these two knots.
History
The name "cinquefoil" comes from the five-petaled flowers of plants in the genus
Potentilla.
See also
Further reading