The amplitude of a periodic variable is a measure of its change in a single period (such as frequency or Wavelength). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.
It is the most widely used measure of orbital wobble in astronomy and the measurement of small radial velocity semi-amplitudes of nearby stars is important in the search for (see Doppler spectroscopy).Goldvais, Uriel A. Exoplanets , pp. 2–3. Retrieved 2008-08-22.
For complicated waveforms, especially non-repeating signals like noise, the RMS amplitude is usually used because it is both unambiguous and has physical significance. For example, the average power transmitted by an acoustic or electromagnetic wave or by an electrical signal is proportional to the square of the RMS amplitude (and not, in general, to the square of the peak amplitude).Ward, Electrical Engineering Science, pp. 141–142, McGraw-Hill, 1971.
For alternating current electric power, the universal practice is to specify RMS values of a sinusoidal waveform. One property of root mean square voltages and currents is that they produce the same heating effect as a direct current in a given resistance.
The peak-to-peak value is used, for example, when choosing rectifiers for power supplies, or when estimating the maximum voltage that insulation must withstand. Some common are calibrated for RMS amplitude, but respond to the average value of a rectified waveform. Many digital voltmeters and all moving coil meters are in this category. The RMS calibration is only correct for a sine wave input since the ratio between peak, average and RMS values is dependent on waveform. If the wave shape being measured is greatly different from a sine wave, the relationship between RMS and average value changes. True RMS-responding meters were used in radio frequency measurements, where instruments measured the heating effect in a resistor to measure a current. The advent of microprocessor-controlled meters capable of calculating RMS by sampling the waveform has made true RMS measurement commonplace.
Pulse amplitude is measured with respect to a specified reference and therefore should be modified by qualifiers, such as average, instantaneous, peak, or root-mean-square.
Pulse amplitude also applies to the amplitude of frequency- and phase-modulated waveform envelopes.
For waves on a string vibration, or in a medium such as water, the amplitude is a displacement.
The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the air pressure in the wave, but sometimes the amplitude of the displacement (movements of the air or the diaphragm of a loudspeaker) is described. The logarithm of the amplitude squared is usually quoted in decibel, so a null amplitude corresponds to −infinity dB. Loudness is related to amplitude and Sound intensity and is one of the most salient qualities of a sound, although in general sounds it can be recognized independently of amplitude. The square of the amplitude is proportional to the intensity of the wave.
For electromagnetic radiation, the amplitude of a photon corresponds to the changes in the electric field of the wave. However, radio signals may be carried by electromagnetic radiation; the intensity of the radiation (amplitude modulation) or the frequency of the radiation (frequency modulation) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.
Percussive amplitude envelopes are characteristic of various impact sounds: two wine glasses clinking together, hitting a drum, slamming a door, etc. where the amplitude is transient and must be represented as either a continuous function or a discrete vector. Percussive amplitude envelopes model many common sounds that have a transient loudness attack, decay, sustain, and release.
To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude proportion envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1). This way, the main loudness-controlling envelope can be cleanly controlled.
In Sound Recognition, max amplitude normalization can be used to help align the key harmonic features of 2 alike sounds, allowing similar timbres to be recognized independent of loudness.
|
|