In materials science, paracrystalline materials are defined as having short- and medium-range ordering in their Bravais lattice (similar to the liquid crystal phases) but lacking crystal-like long-range ordering at least in one direction.
Rolf Hosemann's definition of an ideal paracrystal is: "The electron density distribution of any material is equivalent to that of a paracrystal when there is for every building block one ideal point so that the distance statistics to other ideal points are identical for all of these points. The electron configuration of each building block around its ideal point is statistically independent of its counterpart in neighboring building blocks. A building block corresponds then to the material content of a cell of this "blurred" space lattice, which is to be considered a paracrystal."R. Hosemann, Der ideale Parakristall und die von ihm gestreute kohaerente Roentgenstrahlung, Zeitschrift für Physik 128 (1950) 465–492
The primary, most accessible source of crystallinity information is X-ray diffraction and cryo-electron microscopy, although other techniques may be needed to observe the complex structure of paracrystalline materials, such as fluctuation electron microscopy in combination with density of states modeling of electronic and vibrational states. Scanning transmission electron microscopy can provide real-space and reciprocal space characterization of paracrystallinity in nanoscale material, such as quantum dot solids.
The scattering of X-rays, neutrons and electrons on paracrystals is quantitatively described by the theories of the ideal and realR. Hosemann: Grundlagen der Theorie des Parakristalls und ihre Anwendungensmöglichkeiten bei der Untersuchung der Realstruktur kristalliner Stoffe, Kristall und Technik, Band 11, 1976, S. 1139–1151 paracrystal.
Numerical differences in analyses of diffraction experiments on the basis of either of these two theories of paracrystallinity can often be neglected.
Just like ideal crystals, ideal paracrystals extend theoretically to infinity. Real paracrystals, on the other hand, follow the empirical α*-law, which restricts their size. That size is also indirectly proportional to the components of the tensor of the paracrystalline distortion. Larger solid state aggregates are then composed of micro-paracrystals.
|
|