Product Code Database
Example Keywords: sports games -xbox $88
   » » Wiki: Packaging And Labeling
Tag Wiki 'Packaging And Labeling'.
Packaging is the technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of design, evaluation, and production of packages. Packaging can be described as a coordinated system of preparing goods for transport, warehousing, logistics, sale, and end use. Packaging contains, protects, preserves, transports, informs, and sells.Soroka (2002) Fundamentals of Packaging Technology, Institute of Packaging Professionals ISBN 1-930268-25-4 In many countries it is fully integrated into government, business, institutional, industrial, and personal use.

Package labeling () or labelling () is any written, electronic, or graphic communication on the package or on a separate but associated .


Ancient era
The first packages used the natural materials available at the time: of reeds, wineskins (), , pottery , ceramic , wooden , woven bags, etc. Processed materials were used to form packages as they were developed: for example, early and vessels. The study of old packages is an important aspect of .

The earliest recorded use of paper for packaging dates back to 1035, when a traveler visiting markets in noted that vegetables, spices and hardware were wrapped in paper for the customers after they were sold.

Modern era

The use of for packaging dates back to the 18th century. The manufacture of tinplate was long a of ; in 1667 , an English and brought the method to England where it was improved by ironmasters including . By 1697, had a rolling mill at for making "Pontypoole Plates".H.R. Schubert, History of the British iron and steel industry ... to 1775, 429. The method of rolling iron plates by means of cylinders pioneered there, enabled more uniform black plates to be produced than was possible with the old plan of .

Tinplate boxes first began to be sold from ports in the in 1725. The tinplate was shipped from .Data extracted from D.P. Hussey et al., Gloucester Port Books Database (CD-ROM, University of Wolverhampton 1995). By 1805, 80,000 boxes were made and 50,000 exported. in London began packaging snuff in metal-plated canisters from the 1760s onwards.

With the discovery of the importance of airtight containers for food preservation by French inventor , the tin canning process was patented by British merchant in 1810. After receiving the patent, Durand did not pursue canning food himself. He sold his patent in 1812 to two other Englishmen, and John Hall, who refined the process and product, and set up the world's first commercial canning factory on Southwark Park Road, London. By 1813, they were producing the first canned goods for the . ξ1

The progressive improvement in canning stimulated the 1855 invention of the . Robert Yeates, a cutlery and surgical instrument maker of Trafalgar Place West, Hackney Road, , UK, devised a claw-ended can opener with a hand-operated tool that haggled its way around the top of metal cans. ξ2 In 1858, another lever-type opener of a more complex shape was patented in the United States by of .

Paper-based packaging
Set-up boxes were first used in the 16th century and modern date back to 1839. The first was produced commercially in 1817 in England. received a British patent in 1856 and was used as a liner for tall hats. The Scottish-born invented the pre-cut box in 1890 – flat pieces manufactured in bulk that folded into boxes. Gair's invention came about as a result of an accident: as a printer and paper-bag maker during the 1870s, he was once printing an order of seed bags, and the metal ruler, normally used to crease bags, shifted in position and cut them. Gair discovered that by cutting and creasing in one operation he could make prefabricated paperboard boxes. ξ3

Commercial paper bags were first manufactured in , , in 1844, and American patented a machine for automated bag-making in 1852.

20th century
Packaging advancements in the early 20th century included closures on , transparent overwraps and panels on , increased processing efficiency and improved . As additional materials such as and several types of were developed, they were incorporated into packages to improve performance and functionality. ξ4

In 1952, became the first university in the world to offer a degree in .

In-plant recycling has long been common for production of packaging materials. Post-consumer recycling of aluminum and paper based products has been economical for many years: since the 1980s, post-consumer recycling has increased due to , consumer awareness, and regulatory pressure.

Many prominent innovations in the packaging industry were developed first for military uses. Some military supplies are packaged in the same commercial packaging used for general industry. Other military packaging must transport , supplies, foods, etc. under the most severe distribution and storage conditions. Packaging problems encountered in World War II led to or "mil spec" regulations being applied to packaging, designating it "military specification packaging". As a prominent concept in the military, mil spec packaging officially came into being around 1941, due to experiencing critical losses, eventually attributed to bad packaging. In most cases, mil spec packaging solutions (such as barrier materials, , , and various ) are similar to commercial grade packaging materials, but subject to more stringent performance and quality requirements.

, the packaging sector accounted for about two percent of the in . About half of this market was related to . ξ5

The purposes of packaging and package labels
Packaging and package labeling have several objectives

  • Physical protection – The objects enclosed in the package may require protection from, among other things, mechanical , , , compression, , etc.
  • Barrier protection – A barrier from , , dust, etc., is often required. is a critical factor in design. Some packages contain or to help extend shelf life. or controlled atmospheres are also maintained in some food packages. Keeping the contents clean, fresh, and safe for the intended is a primary function. A barrier is also implemented in cases where segregation of two materials, prior to end use is required, as in case of special paints, glues, medical fluids etc. At consumer end, the packaging barrier is broken or measured amounts of material removed for mixing and subsequent end use.
  • Containment or agglomeration – Small objects are typically grouped together in one package for reasons of efficiency. For example, a single box of 1000 pencils requires less physical handling than 1000 single pencils. , , and need containment.
  • Information transmission – Packages and communicate how to use, transport, , or dispose of the package or product. With , , , and products, some types of information are by governments. Some packages and labels also are used for purposes. Most items include their and on the packaging, and in the case of food products, medicine, and some chemicals the packaging often contains an , usually in a shorthand form. Packages may indicate their material with a symbol.
  • Marketing – The packaging and can be used by to encourage potential buyers to purchase the product. Package and physical design have been important and constantly evolving phenomenon for several decades. and are applied to the surface of the package and (in many cases) the . Most packaging is designed to reflect the brand's message and identity.
  • Security – Packaging can play an important role in reducing the risks of shipment. Packages can be made with improved to deter tampering and also can have features to help indicate tampering. Packages can be engineered to help reduce the risks of or the theft and resale of products: Some package constructions are more resistant to pilferage and some have pilfer indicating seals. , unauthorized sales (diversion), material substitution and tampering can all be prevented with these anti-counterfeiting technologies. Packages may include seals and use to help indicate that the package and contents are not . Packages also can include anti-theft devices, such as dye-packs, tags, or How Anti-shoplifting Devices Work”, tags that can be activated or detected by devices at exit points and require specialized tools to deactivate. Using packaging in this way is a means of .
  • Convenience – Packages can have features that add convenience in distribution, handling, stacking, display, sale, opening, reclosing, use, dispensing, reuse, recycling, and ease of disposal
  • Portion control – Single serving or single packaging has a precise amount of contents to control usage. Bulk commodities (such as salt) can be divided into packages that are a more suitable size for individual households. It also aids the control of inventory: selling sealed one-liter-bottles of milk, rather than having people bring their own bottles to fill themselves.

Packaging types
Packaging may be looked at as being of several different types. For example, a transport package or distribution package can be the used to ship, store, and handle the product or inner packages. Some identify a consumer package as one which is directed toward a consumer or household.

Packaging may be described in relation to the type of product being packaged: packaging, bulk packaging, packaging, retail packaging, military packaging, packaging, etc.

It is sometimes convenient to categorize packages by layer or function: "primary", "secondary", etc.

  • Primary packaging is the material that first envelops the product and holds it. This usually is the smallest unit of distribution or use and is the package which is in direct contact with the contents.
  • Secondary packaging is outside the primary packaging, perhaps used to group primary packages together.
  • Tertiary packaging is used for , storage and shipping. The most common form is a that packs tightly into .

These broad categories can be somewhat arbitrary. For example, depending on the use, a can be primary packaging when applied directly to the product, secondary packaging when combining smaller packages, and tertiary packaging on some distribution packs.

Symbols used on packages and labels
Many types of symbols for package labeling are nationally and internationally standardized. For consumer packaging, symbols exist for product certifications (such as the and marks), , , etc. Some requirements and symbols exist to communicate aspects of consumer rights and safety, for example the or the that notes conformance to EU weights and measures accuracy regulations. Examples of environmental and recycling symbols include the , the (which could be a ), and the . Food packaging may show symbols. In the , products of animal origin which are intended to be consumed by humans have to carry standard, oval-shaped for food safety and quality insurance reasons.

, , and labels are common to allow automated information management in and . is often used. Some products might use or similar . Packaging may have visible and other printing calibration/troubleshooting cues.

Shipping container labeling
Technologies related to shipping containers are identification codes, , and electronic data interchange (). These three core technologies serve to enable the business functions in the process of shipping containers throughout the distribution channel. Each has an essential function: identification codes either relate product information or serve as keys to other data, bar codes allow for the automated input of identification codes and other data, and EDI moves data between trading partners within the distribution channel.

Elements of these core technologies include and item identification codes, the SCC-14 (UPC shipping container code), the SSCC-18 (Serial Shipping Container Codes), Interleaved 2-of-5 and UCC/EAN-128 (newly designated ) bar code , and ANSI ASC X12 and UN/EDIFACT EDI standards.

Small parcel carriers often have their own formats. For example, United Parcel Service has a 2-D code for parcel tracking.

labels for shipping containers are also increasing in usage. A division, , has also moved in this direction and is putting pressure on its suppliers for compliance.

Shipments of or have special information and symbols (labels, placards, etc.) as required by UN, country, and specific carrier requirements. With transport packages, standardized symbols are also used to communicate handling needs. Some are defined in the D5445 "Standard Practice for Pictorial Markings for Handling of Goods" and 780 "Pictorial marking for handling of goods".


Package development considerations
Package design and development are often thought of as an integral part of the process. Alternatively, development of a package (or component) can be a separate process, but must be linked closely with the product to be packaged. Package design starts with the identification of all the requirements: structural design, , , , , legal, regulatory, , end-use, environmental, etc. The design criteria, performance (specified by ), completion time targets, resources, and cost constraints need to be established and agreed upon. Package design processes often employ , , and .

An example of how package design is affected by other factors is the relationship to . When the distribution system includes individual shipments by a small parcel carrier, the sortation, handling, and mixed stacking make severe demands on the strength and protective ability of the transport package. If the logistics system consists of uniform palletized , the structural design of the package can be designed to those specific needs: vertical stacking, perhaps for a longer time frame. A package designed for one mode of shipment may not be suited for another.

With some types of products, the design process involves detailed regulatory requirements for the package. For example, with packaging , any package components that may contact the food are . and need to verify that the packaging materials are allowed by applicable regulations. need to verify that the completed package will keep the product safe for its intended with normal usage. Packaging processes, labeling, distribution, and sale need to be to comply with regulations and have the well being of the consumer in mind.

Sometimes the objectives of package development seem contradictory. For example, regulations for an might require the package to be and : These intentionally make the package difficult to open. The intended consumer, however, might be handicapped or elderly and be unable to readily open the package. Meeting all goals is a challenge.

Package design may take place within a company or with various degrees of external : , , vendor evaluations, independent laboratories, contract packagers, total , etc. Some sort of formal and methodology is required for all but the simplest package design and development programs. An effective system and protocols are mandatory for some types of packaging and recommended for all.

Environmental considerations
Package development involves considerations for , environmental responsibility, and applicable and regulations. It may involve a which considers the material and energy inputs and outputs to the package, the packaged product (contents), the packaging process, the system, , etc. It is necessary to know the relevant regulatory requirements for point of manufacture, sale, and use.

The traditional “three R’s” of reduce, reuse, and recycle are part of a which may be considered in product and package development.

  • Prevention – Waste prevention is a primary goal. Packaging should be used only where needed. Proper packaging can also help prevent waste. Packaging plays an important part in preventing loss or damage to the packaged-product (contents). Usually, the energy content and material usage of the product being packaged are much greater than that of the package. A vital function of the package is to protect the product for its intended use: if the product is damaged or degraded, its entire energy and material content may be lost.
  • Minimization – (also "source reduction") The mass and volume of packaging (per unit of contents) can be measured and used as one of the criteria to minimize during the package design process. Usually “reduced” packaging also helps minimize costs. Packaging engineers continue to work toward reduced packaging.
  • Reuse – is encouraged. Returnable packaging has long been useful (and economically viable) for closed loop logistics systems. Inspection, cleaning, repair and recouperage are often needed. Some manufacturers re-use the packaging of the incoming parts for a product, either as packaging for the outgoing product "HP DeskJet 1200C Printer Architecture". (PDF) . Retrieved on June 27, 2012. or as part of the product itself. "Footprints In The Sand". Retrieved on June 27, 2012.
  • Recycling – is the reprocessing of materials (pre- and post-consumer) into new products. Emphasis is focused on recycling the largest primary components of a package: steel, aluminum, papers, plastics, etc. Small components can be chosen which are not difficult to separate and do not contaminate recycling operations. Packages can sometimes be designed to separate components to better facilitate recycling.
  • Energy recovery – and in approved facilities are able to make use of the heat available from the packaging components.
  • Disposal – , and placement in a sanitary are needed for some materials. Certain US states regulate packages for toxic contents, which have the potential to contaminate emissions and ash from incineration and from landfill. Packages should not be .

Development of is an area of considerable interest by , government, consumers, packagers, and retailers.

Packaging machines
A choice of packaging machinery includes: technical capabilities, labor requirements, worker safety, , serviceability, , ability to integrate into the packaging line, capital cost, floorspace, flexibility (change-over, materials, etc.), energy usage, of outgoing packages, qualifications (for food, pharmaceuticals, etc.), throughput, efficiency, productivity, , , etc.

Packaging machinery can be:

  1. purchased as standard, off-the-shelf
  2. purchased custom-made or custom-tailored to specific operations
  3. manufactured or modified by in-house engineers and maintenance staff

Efforts at packaging line increasingly use and .

Packaging machines may be of the following general types:

  • Accumulating and Collating Machines
  • , and Vacuum Packaging Machines
  • equipment, Over-Capping, Lidding, Closing, Seaming and Sealing Machines
  • , Case and Tray Forming, Packing, Unpacking, Closing and Sealing Machines
  • Cleaning, Sterilizing, Cooling and Drying Machines
  • Coding, Printing, Marking, Stamping, and Imprinting Machines
  • Machines
  • , Accumulating and Related Machines
  • Feeding, Orienting, Placing and Related Machines
  • : Handling dry, powdered, solid, liquid, gas, or viscous products
  • : visual, sound, metal detecting, etc.
  • Orienting, Unscrambling Machines
  • Package Filling and Closing Machines
  • , Depalletizing, assembly
  • Product Identification: , marking, etc.
  • Sealing Machines:
  • :
  • Weighing Machines: ,
  • Wrapping machines: Stretch wrapping, , Banding
  • Other specialty machinery: , , cutters, parts attachment, etc.
by shrink film, and on roller ]]
for sorting]]
applicator applying a label to adjacent panels of a .]]
used to palletize bread]]
components and molding packaging from ]]

See also

Books, general references
  • Yam, K.L., "Encyclopedia of Packaging Technology", John Wiley & Sons, 2009, ISBN 978-0-470-08704-6

Further reading
  • Calver, G., What Is Packaging Design, Rotovision. 2004, ISBN 2-88046-618-0.
  • Dean, D.A., 'Pharmaceutical Packaging Technology", 2000, ISBN 0-7484-0440-6
  • Fiedler, R.M., "Distribution Packaging Technology", IoPP, 1995
  • Holkham, T., "Label Writing and Planning – A guide to good customer communication", Chapman & Hall 1995, ISBN 0-7514-0361-X
  • Jankowski, J., Shelf Space: Modern Package Design, 1945–1965, Chronicle Books. 1988 ISBN 0-8118-1784-9.
  • Leonard, E.A. (1996), Packaging, Marcel Dekker. ISBN 0-8247-9755-8.
  • Lockhart, H., and Paine, F.A., "Packaging of Pharmaceuticals and Healthcare Products", 2006, Blackie, ISBN 0-7514-0167-6
  • McKinlay, A.H., "Transport Packaging", IoPP, 2004
  • Morris, S.A., "Food and Package Engineering", 2011, ISBN 978-0-8138-1479-7
  • Opie, R., Packaging Source Book, 1991, ISBN 1-55521-511-4, ISBN 978-1-55521-511-8
  • Pilchik, R., "Validating Medical Packaging" 2002, ISBN 1-56676-807-1
  • Robertson, G.L., "Food Packaging: Principles and Practice", 3rd edition, 2013, ISBN 978-1-4398-6241-4
  • Selke, S., "Packaging and the Environment", 1994, ISBN 1-56676-104-2
  • Selke, S., "Plastics Packaging", 2004, ISBN 1-56990-372-7
  • Stillwell, E.J., "Packaging for the Environment", A.D. Little, 1991, ISBN 0-8144-5074-1

    ^ (1963). 9780714612843, Routledge. .
    ^ (2004). 9781579583804, Taylor & Francis Group. .
    ^ (2022). 9781932078428, DEStech Publications. .
    ^ (1997). 9780471063971
    ^ (2022). 9781405182980, Wiley-Blackwell.

Page 1 of 1
Page 1 of 1


Pages:  ..   .. 
Items:  .. 


General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 


Page:  .. 
Summary:  .. 
499 Tags
10/10 Page Rank
189999 Page Refs
5s Time