An operational amplifier (often op amp, op-amp, or opamp) is a direct coupling electronic amplifier with a differential input, a (usually) single-ended output voltage, and an extremely high gain. Its name comes from its original use of performing mathematical operations in . The voltage-feedback opamp ( VFOA or VFA, the focus of this article) amplifies the voltage difference between its two inputs, while the less common current-feedback op amp (CFOA) amplifies the Electric current between its two inputs.
By using negative feedback, the characteristics of an op amp application circuit (e.g., its gain, input and output impedance, bandwidth, and functionality) can be determined by external components and have little dependence on temperature coefficients or engineering tolerance in the op amp itself. This flexibility has made the op amp a popular building block in .
Today, op amps are used widely in consumer, industrial, and scientific electronics. Many standard integrated circuit op amps cost only a few cents; however, some integrated or hybrid operational amplifiers with special performance specifications may cost over . Op amps may be packaged as components or used as elements of more complex integrated circuits.
The op amp is one type of differential amplifier. Other differential amplifier types include the fully differential amplifier (an op amp with a differential rather than single-ended output), the instrumentation amplifier (usually built from three op amps), the isolation amplifier (with galvanic isolation between input and output), and negative-feedback amplifier (usually built from one or more op amps and a resistive feedback network).
Without negative feedback, and optionally positive feedback for regeneration, an open-loop op amp acts as a comparator, although comparator ICs are better suited. If the inverting input of an ideal op amp is held at ground (0 V), and the input voltage applied to the non-inverting input is positive, the output will be maximum positive; if is negative, the output will be maximum negative.
The response of the op-amp circuit with its input, output, and feedback circuits to an input is characterized mathematically by a transfer function; designing an op-amp circuit to have a desired transfer function is in the realm of electrical engineering. The transfer functions are important in most applications of op amps, such as in .
In the non-inverting amplifier on the right, the presence of negative feedback via the voltage divider , determines the closed-loop gain . Equilibrium will be established when is just sufficient to pull the inverting input to the same voltage as . The voltage gain of the entire circuit is thus . As a simple example, if and , will be 2 V, exactly the amount required to keep at 1 V. Because of the feedback provided by the , network, this is a closed-loop circuit.
Another way to analyze this circuit proceeds by making the following (usually valid) assumptions:
The input signal appears at both (+) and (−) pins per assumption 1, resulting in a current through equal to :
Because Kirchhoff's current law states that the same current must leave a node as enter it, and because the impedance into the (−) pin is near infinity per assumption 2, we can assume practically all of the same current flows through , creating an output voltage
By combining terms, we determine the closed-loop gain :
These ideals can be summarized by the two :
The first rule only applies in the usual case where the op amp is used in a negative feedback design, where there is a signal path of some sort feeding back from the output to the inverting input. These rules are commonly used as a good first approximation for analyzing or designing op-amp circuits.
None of these ideals can be perfectly realized. A real op amp may be modeled with non-infinite or non-zero parameters using equivalent resistors and capacitors in the op-amp model. The designer can then include these effects into the overall performance of the final circuit. Some parameters may turn out to have negligible effect on the final design while others represent actual limitations of the final performance.
1947: An op amp with an explicit non-inverting input. In 1947, the operational amplifier was first formally defined and named in a paper by John R. Ragazzini of Columbia University. In this same paper a footnote mentions an op-amp design by a student that would turn out to be quite significant. This op amp, designed by Loebe Julie, has two major innovations. Its input stage use a long-tailed triode pair with loads matched to reduce drift in the output and, far more importantly, it is the first op-amp design to have two inputs (one inverting, the other non-inverting). The differential input makes a whole range of new functionality possible, but it would not be used for a long time due to the rise of the chopper-stabilized amplifier.
1949: A chopper-stabilized op amp. In 1949, Edwin A. Goldberg designed a chopper-stabilized op amp. This set-up uses a normal op amp with an additional AC amplifier that goes alongside the op amp. The chopper gets an AC signal from Direct current by switching between the DC voltage and ground at a fast rate (60 or 400 Hz). This signal is then amplified, rectified, filtered and fed into the op amp's non-inverting input. This vastly improved the gain of the op amp while significantly reducing the output drift and DC offset. Unfortunately, any design that used a chopper couldn't use the non-inverting input for any other purpose. Nevertheless, the much-improved characteristics of the chopper-stabilized op amp made it the dominant way to use op amps. Techniques that used the non-inverting input were not widely practiced until the 1960s when op-amp ICs became available.
1953: A commercially available op amp. In 1953, vacuum tube op amps became commercially available with the release of the model K2-W from George A. Philbrick Researches, Incorporated. The designation on the devices shown, GAP/R, is an acronym for the complete company name. Two nine-pin 12AX7 vacuum tubes were mounted in an octal package and had a model K2-P chopper add-on available. This op amp was based on a descendant of Loebe Julie's 1947 design and, along with its successors, would start the widespread use of op amps in industry.
1961: A discrete IC op amp. With the birth of the transistor in 1947, and the silicon transistor in 1954, the concept of ICs became a reality. The introduction of the planar process in 1959 made transistors and ICs stable enough to be commercially useful. By 1961, solid-state, discrete op amps were being produced. These op amps are effectively small circuit boards with packages such as . They usually have hand-selected resistors in order to improve things such as voltage offset and drift. The P45 (1961) has a gain of 94 dB and runs on ±15 V rails. It was intended to deal with signals in the range of .
1961: A varactor bridge op amp. There have been many different directions taken in op-amp design. Varactor bridge op amps started to be produced in the early 1960s.June 1961 advertisement for Philbrick P2, They were designed to have extremely small input current and are still amongst the best op amps available in terms of common-mode rejection with the ability to correctly deal with hundreds of volts at their inputs.
1962: An op amp in a potted module. By 1962, several companies were producing modular potted packages that could be plugged into printed circuit boards. These packages were crucially important as they made the operational amplifier into a single black box which could be easily treated as a component in a larger circuit.
1963: A monolithic IC op amp. In 1963, the first monolithic IC op amp, the μA702 designed by Bob Widlar at Fairchild Semiconductor, was released. Monolithic ICs consist of a single chip as opposed to a chip and discrete parts (a discrete IC) or multiple chips bonded and connected on a circuit board (a hybrid IC). Almost all modern op amps are monolithic ICs; however, this first IC did not meet with much success. Issues such as an uneven supply voltage, low gain and a small dynamic range held off the dominance of monolithic op amps until 1965 when the μA709 (also designed by Bob Widlar) was released.
1968: Release of the μA741. The popularity of monolithic op amps was further improved with the release of the LM101 in 1967, which solved a variety of issues, and the subsequent release of the μA741 in 1968. The μA741 was extremely similar to the LM101 except that Fairchild's manufacturing processes allowed them to include a 30 pF compensation capacitor inside the chip instead of requiring external compensation. This simple difference has made the 741 a canonical op amp and a range of modern amps base their pinout on the 741s. The μA741 is still in production, and has become ubiquitous in electronics—many manufacturers produce a version of this classic chip, recognizable by part numbers containing 741.
1970: First high-speed, low-input current FET design. In the 1970s high-speed, low-input current designs started to be made by using . These would be largely replaced by op amps made with in the 1980s.
1972: Single-sided supply op amps being produced. A single-sided supply op amp is one where the input and output voltages can be as low as the negative power supply voltage instead of needing to be at least two volts above it. The result is that it can operate in many applications with the negative supply pin on the op amp being connected to the signal ground, thus eliminating the need for a separate negative power supply. The LM324, released in 1972, was one such op amp that came in a quad package (four separate op amps in one package) and became an industry standard.
Recent trends. Supply voltages in analog circuits have decreased (as they have in digital logic) and low-voltage op amps have been introduced reflecting this. Supplies of 5 V and increasingly 3.3 V (sometimes as low as 1.8 V) are common. To maximize the signal range, modern op amps commonly have rail-to-rail output (the output signal can range from the lowest supply voltage to the highest) and sometimes rail-to-rail inputs.
|
|