Laundry detergent is a type of detergent (cleaning agent) used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder ( washing powder) and liquid form.
While powdered and liquid detergents hold roughly equal share of the worldwide laundry detergent market in terms of value, powdered detergents are sold twice as much compared to liquids in terms of volume.
German chemical companies developed an alkyl sulfate surfactant in 1917, in response to shortages of soap ingredients during the Allied Blockade of Germany during World War I. In the 1930s, commercially viable routes to were developed, and these new materials were converted to their Organosulfate, key ingredients in the commercially important German brand FEWA, produced by BASF, and Dreft, the U.S. brand produced by Procter & Gamble. Such detergents were mainly used in industry until after World War II. By then, new developments and the later conversion of aviation fuel plants to produce tetrapropylene, used in household detergents production, caused a fast growth of domestic use in the late 1940s.
Soils difficult to remove are pigments and dyes, , resins, tar, waxes, and denatured protein.
The earliest builders were sodium carbonate (washing soda) and sodium silicate (waterglass). In the 1930s (sodium phosphates) and (sodium hexametaphosphate) were introduced, continuing with the introduction of (Etidronic acid, ATMP, EDTMP). While these phosphorus-based agents are generally non-toxic they are now known to cause nutrient pollution, which can have serious environmental consequences. As such they have been banned in many countries, leading to the development of phosphorus-free agents, such as polycarboxylates (EDTA, NTA), (trisodium citrate), (sodium silicate), gluconic acid and polyacrylic acid; or ion exchange agents like .
Alkali builders may also enhance performance by changing the pH of the wash. Hydrophilic fibers like cotton will naturally have a negative surface charge in water, whereas synthetic fibers are comparatively neutral. The negative charge is further increased by the adsorption of anionic surfactants. With increasing pH, soil and fibers become more negatively charged, resulting in increased mutual repulsion. The optimum pH range for good detergency is 9–10.5. Alkalis may also enhance wash performance via the saponification of fats.
Builder and surfactant work synergistically to achieve soil removal, and the washing effect of the builder may exceed that of the surfactant. With hydrophilic fibers like cotton, wool, polyamide and polyacrylonitrile, sodium triphosphate removes soil more effectively than a surfactant alone. It is expected that when washing hydrophobic fibers like and , the effectiveness of the surfactant surpasses that of the builder, however this is not the case.
Laundry detergents contain mostly anionic and non-ionic surfactants. Cationic surfactants are normally incompatible with anionic detergents and have poor cleaning efficiency; they are employed only for certain special effects, as , , and . Zwitterionic surfactants are rarely employed in laundry detergents mainly for cost reasons. Most detergents use a combination of various surfactants to balance their performance.
Until the 1950s, soap was the predominant surfactant in laundry detergents. By the end of the 1950s so-called "synthetic detergents" (syndets) like branched alkylbenzene sulfonates had largely replaced soap in developed countries. Due to their poor biodegradability these branched alkylbenzenesulfonates were replaced with linear alkylbenzenesulfonates (LAS) in the mid-1960s. Since the 1980s, such as SDS have found increasing application at the expense of LAS.
Since the 1970s, nonionic surfactants like alcohol ethoxylates have acquired a higher share in laundry detergents. In the 1990s, appeared as co-surfactants, and alkyl polyglycosides have been used in specialty detergents for fine fabrics.
Enzymes are required to degrade stubborn stains composed of (e.g., milk, cocoa, blood, egg yolk, grass), (e.g., chocolate, fats, oils), starch (e.g., flour and potato stains), and cellulose (damaged cotton , vegetable and fruit stains). Each type of stain requires a different type of enzyme: (savinase) for proteins, for greases, α-amylases for carbohydrates, and for cellulose.
A number of ingredients affect aesthetic properties of the item to be cleaned or the detergent itself before or during use. These agents include optical brighteners, , and colorants. A variety of are also components of modern detergents, provided that they are compatible with the other components and do not affect the color of the cleaned item. The perfumes are typically a mixture of many compounds, common classes include terpene alcohols (citronellol, geraniol, linalool, nerol) and their esters (linalyl acetate), aromatic (helional, hexyl cinnamaldehyde, lilial) and (galaxolide).
A 2013 academic study of fragranced laundry products found "more than 25 VOCs emitted from dryer vents, with the highest concentrations of acetaldehyde, acetone, and ethanol. Seven of these VOCs are classified as hazardous air pollutants (HAPs) and two as carcinogenic HAPs (acetaldehyde and benzene)".Anne C. Steinemann, "Chemical Emissions from Residential Dryer Vents During Use of Fragranced Laundry Products", Air Quality, Atmosphere and Health, March 2013, Vol. 6, Issue 1, pp. 151–156.
The EEC Directive 73/404/EEC stipulates an average biodegradability of at least 90% for all types of surfactants used in detergents. The phosphate content of detergents is regulated in many countries, e.g., Austria, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland, United States, Canada, and Japan.
Bleaches
Enzymes
Other ingredients
Market
Environmental concerns
See also
External links
|
|