Laryngoscopy () is endoscopy of the larynx, a part of the throat. It is a medical procedure that is used to obtain a view, for example, of the vocal folds and the glottis. Laryngoscopy may be performed to facilitate tracheal intubation during general anaesthesia or cardiopulmonary resuscitation or for surgery procedures on the larynx or other parts of the upper tracheobronchial tree.
In 1854, the Vocal pedagogy Manuel García (1805–1906) became the first man to view the functioning glottis and larynx in a living human. García developed a tool that used two mirrors for which the Sun served as an external light source.American Otological Society (1905). The Laryngoscope. Volume 15, pp. 402–403 Using this device, he was able to observe the function of his own glottic apparatus and the uppermost portion of his trachea. He presented his findings at the Royal Society in 1855.
All previous observations of the glottis and larynx had been performed under indirect vision (using mirrors) until 23 April 1895, when Alfred Kirstein (1863–1922) of Germany first described direct visualization of the vocal cords. Kirstein performed the first direct laryngoscopy in Berlin, using an esophagoscope he had modified for this purpose; he called this device an autoscope. It is believed that the death in 1888 of Emperor Frederick III motivated Kirstein to develop the autoscope.
In 1913, Chevalier Jackson was the first to report a high rate of success for the use of direct laryngoscopy as a means to intubate the trachea. Jackson introduced a new laryngoscope blade that had a light source at the distal tip, rather than the proximal light source used by Kirstein. This new blade incorporated a component that the operator could slide out to allow room for passage of an endotracheal tube or bronchoscope.
That same year, Henry Harrington Janeway (1873–1921) published results he had achieved using another new laryngoscope he had recently developed. An American anesthesiologist practicing at Bellevue Hospital in New York City, Janeway believed that direct intratracheal insufflation of volatile anesthetics would provide improved conditions for surgery of the Otolaryngology. With this in mind, he developed a laryngoscope designed for the sole purpose of tracheal intubation. Similar to Jackson's device, Janeway's instrument incorporated a distal light source. Unique however was the inclusion of batteries within the handle, a central notch in the blade for maintaining the tracheal tube in the midline of the oropharynx during intubation, and a slight curve to the distal tip of the blade to help guide the tube through the glottis. The success of this design led to its subsequent use in other types of surgery. Janeway was thus instrumental in popularizing the widespread use of direct laryngoscopy and tracheal intubation in the practice of anesthesiology.
Two basic styles of laryngoscope blade are currently commercially available: the curved blade and the straight blade. The Robert Macintosh blade is the most widely used of the curved laryngoscope blades, while the Miller blade is the most popular style of straight blade. Both Miller and Macintosh laryngoscope blades are available in sizes 0 (neonatal) through 4 (large adult). There are many other styles of curved and straight blades (e.g., Phillips, Robertshaw, Sykes, Wisconsin, Wis-Hipple, etc.) with accessories such as mirrors for enlarging the field of view and even ports for the administration of oxygen. These specialty blades are primarily designed for use by Anesthesiologist, most commonly in the operating room. Additionally, paramedics are trained to use direct laryngoscopy to assist with intubation in the field.
The Macintosh blade is positioned in the vallecula, anterior to the epiglottis, lifting it out of the visual pathway, while the Miller blade is positioned posterior to the epiglottis, trapping it while exposing the glottis and vocal folds. Incorrect usage can cause dental trauma to the front ; the correct technique is to displace the chin upwards and forward at the same time, not to use the blade as a lever with the teeth serving as the fulcrum.
The Miller, Wisconsin, Wis-Hipple, and Robertshaw blades are commonly used for infants. It is easier to visualize the glottis using these blades than the Macintosh blade in infants, due to the larger size of the epiglottis relative to that of the glottis.
Other available fiberoptic devices include the Bullard scope, UpsherScope, and the WuScope. These devices are widely employed for tracheal intubation, especially in the setting of the difficult intubation (see below).
Tracheal intubation with the GlideScope can be facilitated by the use of the Verathon Stylet, a rigid stylet that is curved to follow the 60° angulation of the blade. To achieve a 99% successful rate of intubation with the GlideScope requires the operator to acquire a new skill set with this stylet.
In a 2003 study, the authors noted that the GlideScope provided adequate vision of the glottis (Cormack and Lehane grade I-II) even when the oral, pharyngeal and laryngeal axes could not be optimally aligned due to the presence of a cervical collar. Despite this significant limitation, the average time to intubate the trachea with the GlideScope was only 38 seconds. In 2005, the first major clinical study comparing the Glidescope to the conventional laryngoscope was published. In 133 patients in whom both Glidescope and conventional laryngoscopy were performed, excellent or good laryngeal exposure was obtained in 124/133 (93%) of Glidescope laryngoscopy patients, compared with only 98/133 (74%) of patients in whom conventional laryngoscopy was used. Intubation was successful in 128/133 (96%) of Glidescope laryngoscopy patients. These early results suggest that this device may be a useful alternative in the management of difficult tracheal intubation.
The Verathon design team later produced the Ranger Video Laryngoscope for a United States Air Force requirement that is now rolling forward into EMS and military use. The Cobalt series of GlideScope then introduced a single-use variant that encompasses weights from 1000 grams to morbid obesity and is successful in many airway syndromes as well. The GlideScope Ranger is a variant designed for use in pre-hospital airway management including air, land, and sea applications. This device weighs 1.5 pounds, and is waterproof as well as airworthy to 20,000 feet altitude. The GlideScope Cobalt is a variant that has a reusable video camera with light-emitting core which has a disposable or single use external shell for prevention of cross infection.
In August 2009, the team at Verathon collaborated with Professor John Sakles from the University of Arizona Emergency Department in achieving the world's first tracheal intubation conducted with the assistance of telemedicine technology. During this demonstration, Sakles and the University of Arizona Telemedicine service guided physicians in a rural hospital as they performed a tracheal intubation using the GlideScope.
Applications
Conventional laryngoscope
Laryngoscope blades
Bainton Cedric Bainton 1987 Straight tongue with distal 7 cm. tubular, designed specifically for pathologic conditions Cranwall George D. Cranton and Barry L. Wall 1963 straight, no flange Jackson Chevalier Jackson straight Janeway Henry H. Janeway straight Reduced Flange (RF Mac) George D. Cranton 1999 curved reduced flange at heel Macintosh Robert Macintosh 1943 curved Magill Ivan Magill 1921 straight blade with U-shaped cross section McCoy 1993 Lever-tip for anterior displacement of the epiglottic vallecula and epiglottis in difficult intubation. Miller Robert A. Miller 1941 straight blade with curved tip Parrott C.M. Parrott 1951 curved Phillips 1973 straight Robertshaw straight Seward straight Siker 1956 curved, with integrated mirror Soper R.I. Soper 1947 straight Vie Scope N. Vasan 2016 Direct Line of Sight Wis-Hipple straight Wisconsin straight
Fiberoptic laryngoscopes
Video laryngoscope
GlideScope
Other video laryngoscopes
Other noninvasive intubation devices
Complications
Etymology and pronunciation
External links
|
|