In 1967, Elliott H. Lieb found the exact solution to a two-dimensional ice model known as "square ice". The exact solution in three dimensions is only known for a special "frozen" state.
For two-dimensional models, the lattice is taken to be the square lattice. For more realistic models, one can use a three-dimensional lattice appropriate to the material being considered; for example, the Ice Ih is used to analyse ice.
At any vertex, there are six configurations of the arrows which satisfy the ice rule (justifying the name "six-vertex model"). The valid configurations for the (two-dimensional) square lattice are the following:
The energy of a state is understood to be a function of the configurations at each vertex. For square lattices, one assumes that the total energy is given by
for some constants , where here denotes the number of vertices with the th configuration from the above figure. The value is the energy associated with vertex configuration number .
One aims to calculate the partition function of an ice-type model, which is given by the formula
where the sum is taken over all states of the model, is the energy of the state, is the Boltzmann constant, and is the system's temperature.
Typically, one is interested in the thermodynamic limit in which the number of vertices approaches infinity. In that case, one instead evaluates the free energy per vertex in the limit as , where is given by
Equivalently, one evaluates the partition function per vertex in the thermodynamic limit, where
The values and are related by
In ice, each oxygen atom is connected by a bond to four hydrogens, and each bond contains one hydrogen atom between the terminal oxygens. The hydrogen occupies one of two symmetrically located positions, neither of which is in the middle of the bond. Pauling argued that the allowed configuration of hydrogen atoms is such that there are always exactly two hydrogens close to each oxygen, thus making the local environment imitate that of a water molecule, . Thus, if we take the oxygen atoms as the lattice vertices and the hydrogen bonds as the lattice edges, and if we draw an arrow on a bond which points to the side of the bond on which the hydrogen atom sits, then ice satisfies the ice model. Similar reasoning applies to show that KDP also satisfies the ice model.
In recent years, ice-type models have been explored as descriptions of pyrochlore spin ice and artificial spin ice systems, in which geometrical frustration in the interactions between bistable ("spins") leads to "ice-rule" spin configurations being favoured. Recently such analogies have been extended to explore the circumstances under which spin-ice systems may be accurately described by the Rys F-model.
For this model (called the KDP model), the most likely state (the least-energy state) has all horizontal arrows pointing in the same direction, and likewise for all vertical arrows. Such a state is a ferroelectric state, in which all hydrogen atoms have a preference for one fixed side of their bonds.
The least-energy state for this model is dominated by vertex configurations 5 and 6. For such a state, adjacent horizontal bonds necessarily have arrows in opposite directions and similarly for vertical bonds, so this state is an antiferroelectric state.
This assumption is known as the zero field assumption, and holds for the ice model, the KDP model, and the Rys F model.
where is the Boltzmann constant, is the number of oxygen atoms in the piece of ice, which is always taken to be large (the thermodynamic limit) and is the number of configurations of the hydrogen atoms according to Pauling's ice rule. Without the ice rule we would have since the number of hydrogen atoms is and each hydrogen has two possible locations. Pauling estimated that the ice rule reduces this to , a number that would agree extremely well with the Giauque-Stout measurement of . It can be said that Pauling's calculation of for ice is one of the simplest, yet most accurate applications of statistical mechanics to real substances ever made. The question that remained was whether, given the model, Pauling's calculation of , which was very approximate, would be sustained by a rigorous calculation. This became a significant problem in combinatorics.
Both the three-dimensional and two-dimensional models were computed numerically by John F. Nagle in 1966 who found that in three-dimensions and in two-dimensions. Both are amazingly close to Pauling's rough calculation, 1.5.
In 1967, Lieb found the exact solution of three two-dimensional ice-type models: the ice model, the Rys model, and the KDP model. The solution for the ice model gave the exact value of in two-dimensions as
which is known as Lieb's square ice constant.
Later in 1967, T. Bill Sutherland generalised Lieb's solution of the three specific ice-type models to a general exact solution for square-lattice ice-type models satisfying the zero field assumption.
Still later in 1967, C. P. Yang generalised Sutherland's solution to an exact solution for square-lattice ice-type models in a horizontal electric field.
In 1969, John Nagle derived the exact solution for a three-dimensional version of the KDP model, for a specific range of temperatures. For such temperatures, the model is "frozen" in the sense that (in the thermodynamic limit) the energy per vertex and entropy per vertex are both zero. This is the only known exact solution for a three-dimensional ice-type model.
Clearly, the largest is given by free boundary conditions (no constraint at all on the configurations on the boundary), but the same occurs, in the thermodynamic limit, for periodic boundary conditions, as used originally to derive .
|
|