In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat space hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.
Most commonly, the ambient space is -dimensional Euclidean space, in which case the hyperplanes are the -dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.
In non-Euclidean geometry, the ambient space might be the n-sphere or hyperbolic space, or more generally a pseudo-Riemannian space form, and the hyperplanes are the hypersurfaces consisting of all through a point which are perpendicular to a specific normal geodesic.
In other kinds of ambient spaces, some properties from Euclidean space are no longer relevant. For example, in affine space, there is no concept of distance, so there are no reflections or motions. In a orientability space such as elliptic space or projective space, there is no concept of half-planes. In greatest generality, the notion of hyperplane is meaningful in any mathematical space in which the concept of the dimension of a subspace is defined.
The difference in dimension between a subspace and its ambient space is known as its codimension. A hyperplane has codimension .
If V is a vector space, one distinguishes "vector hyperplanes" (which are , and therefore must pass through the origin) and "affine hyperplanes" (which need not pass through the origin; they can be obtained by translation of a vector hyperplane). A hyperplane in a Euclidean space separates that space into two half spaces, and defines a reflection that fixes the hyperplane and interchanges those two half spaces.
In the case of a real affine space, in other words when the coordinates are real numbers, this affine space separates the space into two half-spaces, which are the connected components of the complement of the hyperplane, and are given by the inequalities
and
As an example, a point is a hyperplane in 1-dimensional space, a line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-dimensional space is not a hyperplane, and does not separate the space into two parts (the complement of such a line is connected).
Any hyperplane of a Euclidean space has exactly two unit normal vectors: . In particular, if we consider equipped with the conventional inner product (dot product), then one can define the affine subspace with normal vector and origin translation as the set of all such that .
Affine hyperplanes are used to define decision boundaries in many machine learning algorithms such as linear-combination (oblique) decision trees, and .
In projective space, a hyperplane does not divide the space into two parts; rather, it takes two hyperplanes to separate points and divide up the space. The reason for this is that the space essentially "wraps around" so that both sides of a lone hyperplane are connected to each other.
In machine learning, hyperplanes are a key tool to create support vector machines for such tasks as computer vision and natural language processing.
The datapoint and its predicted value via a linear model is a hyperplane.
In astronomy, hyperplanes can be used to calculate shortest distance between star systems, galaxies and celestial bodies with regard of general relativity and curvature of space-time as optimized geodesic or paths influenced by gravitational fields.
|
|