In biochemistry, a protein dimer is a macromolecular complex or protein multimer formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or , form dimers. The word dimer has roots meaning "two parts", + . A protein dimer is a type of protein quaternary structure.
A protein homodimer is formed by two identical while a protein heterodimer is formed by two different proteins.
Most protein dimers in biochemistry are not connected by . An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains. An exception is dimers that are linked by such as the homodimeric protein IKBKG.
Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity.
The G protein-coupled cannabinoid receptors have the ability to form both homo- and heterodimers with several types of receptors such as mu-opioid, dopamine and adenosine A2 receptors.
Examples
-
Transcription factors
-
14-3-3 proteins
-
Variable surface glycoproteins of the Trypanosoma parasite
-
Tubulin
-
Some clotting factors
-
Some receptors
-
-
G protein βγ-subunit dimer
-
Toll-like receptor
-
Receptor tyrosine kinases
-
Some enzymes
-
Type II restriction enzymes
-
Triosephosphateisomerase (TIM)
-
Alcohol dehydrogenase
-
Some viral proteins
Alkaline phosphatase
E. coli alkaline phosphatase, a dimer enzyme, exhibits intragenic complementation.
That is, when particular
mutant versions of alkaline phosphatase were combined, the heterodimeric enzymes formed as a result exhibited a higher level of activity than would be expected based on the relative activities of the parental enzymes. These findings indicated that the dimer structure of the
E. coli alkaline phosphatase allows cooperative interactions between the constituent mutant monomers that can generate a more functional form of the
holoenzyme. The dimer has two active sites, each containing two zinc ions and a magnesium ion.
[Hjorleifsson, Jens GuethMundur, and Bjarni Asgeirsson. "Cold-Active Alkaline Phosphatase Is Irreversibly Transformed into an Inactive Dimer by Low Urea Concentrations." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
]
/ref>
See also
-
Conn. (2013). G protein coupled receptors modeling, activation, interactions and virtual screening (1st ed.). Academic Press.
-
Matthews, Jacqueline M. Protein Dimerization and Oligomerization in Biology. Springer New York, 2012.