Product Code Database
Example Keywords: second life -ring $16-156
barcode-scavenger
   » » Wiki: Hydrate
Tag Wiki 'Hydrate'.
Tag

In , a hydrate is a substance that contains or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understood.


Chemical nature

Inorganic chemistry
Hydrates are inorganic salts "containing water molecules combined in a definite ratio as an integral part of the " that are either bound to a metal center or that have crystallized with the metal complex. Such hydrates are also said to contain water of crystallization or water of hydration. If the water is in which the constituent hydrogen is the , then the term deuterate may be used in place of hydrate.
9780124462502, Academic Press Inc. (London) Ltd.. .

Cobalt(II) chloride
hexahydrate
' (pink)
A colorful example is cobalt(II) chloride, which turns from blue to red upon hydration, and can therefore be used as a water indicator.

The notation " hydrated compound n", where n is the number of water molecules per of the salt, is commonly used to show that a salt is hydrated. The n is usually a low , though it is possible for fractional values to occur. For example, in a monohydrate n = 1, and in a hexahydrate n = 6. Numerical prefixes mostly of Greek origin are: Nomenclature of Inorganic Chemistry . IUPAC Recommendations 2005. Table IV Multiplicative Prefixes, p. 258.

A hydrate that has lost water is referred to as an anhydride; the remaining water, if any exists, can only be removed with very strong heating. A substance that does not contain any water is referred to as . Some anhydrous compounds are hydrated so easily that they are said to be and are used as drying agents or .


Organic chemistry
In organic chemistry, a hydrate is a compound formed by the hydration, i.e. "Addition of water or of the elements of water (i.e. H and OH) to a molecular entity". For example: , , is the product of the hydration reaction of , , formed by the addition of H to one C and OH to the other C, and so can be considered as the hydrate of ethene. A molecule of water may be eliminated, for example, by the action of . Another example is , , which can be formed by reaction of water with , .

Many organic molecules, as well as inorganic molecules, form crystals that incorporate water into the crystalline structure without chemical alteration of the organic molecule (water of crystallization). The sugar , for example, exists in both an form ( 203 °C) and as a dihydrate (melting point 97 °C). Protein crystals commonly have as much as 50% water content.

Molecules are also labeled as hydrates for historical reasons not covered above. , , was originally thought of as and described as a .

Hydrate formation is common for active ingredients. Many manufacturing processes provide an opportunity for hydrates to form and the state of hydration can be changed with environmental humidity and time. The state of hydration of an active pharmaceutical ingredient can significantly affect the solubility and dissolution rate and therefore its .Surov, Artem O., Nikita A. Vasilev, Andrei V. Churakov, Julia Stroh, Franziska Emmerling, and German L. Perlovich. "Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways and Thermodynamic Stability". Crystal Growth & Design (2019). .


Clathrate hydrates
Clathrate hydrates (also known as gas hydrates, gas clathrates, etc.) are water ice with gas molecules trapped within; they are a form of . An important example is (also known as gas hydrate, methane clathrate, etc.).

Nonpolar molecules, such as methane, can form clathrate hydrates with water, especially under high pressure. Although there is no between water and guest molecules when methane is the guest molecule of the clathrate, guest–host hydrogen bonding often forms when the guest is a larger organic molecule such as . In such cases, the guest–host hydrogen bonds result in the formation of L-type in the clathrate lattice.


Stability
The stability of hydrates is generally determined by the nature of the compounds, their temperature, and the relative humidity (if they are exposed to air).


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time