Product Code Database
Example Keywords: netbooks -arcade $69-153
barcode-scavenger
   » » Wiki: Hexagonal Prism
Tag Wiki 'Hexagonal Prism'.
Tag

 of order 24
| type = prism,
[[parallelohedron]] | dual = hexagonal bipyramid

In , the hexagonal prism is a prism with base. Prisms are ; this polyhedron has 8 faces, 18 edges, and 12 vertices..


As a semiregular polyhedron
If faces are all regular, the hexagonal prism is a semiregular polyhedron—more generally, a uniform polyhedron—and the fourth in an infinite set of prisms formed by square sides and two regular polygon caps. It can be seen as a truncated , represented by Schläfli symbol t{2,6}. Alternately it can be seen as the Cartesian product of a regular hexagon and a , and represented by the product {6}×{}. The of a hexagonal prism is a hexagonal bipyramid.

The of a right hexagonal prism is prismatic symmetry D_{6 \mathrm{h}} of order 24, consisting of rotation around an axis passing through the regular hexagon bases' center, and reflection across a horizontal plane.

As in most prisms, the volume is found by taking the area of the base, with a side length of a , and multiplying it by the height h, giving the formula: V = \frac{3 \sqrt{3}}{2}a^2h, and its surface area is by summing the area of two regular hexagonal bases and the lateral faces of six squares: S = 3a(\sqrt{3}a+2h).


As a parallelohedron
The hexagonal prism is one of the , a polyhedral class that can be translated without rotations in Euclidean space, producing honeycombs; this class was discovered by in accordance with his studies of crystallography systems. The hexagonal prism is generated from four line segments, three of them parallel to a common plane and the fourth not. Its most symmetric form is the right prism over a regular hexagon, forming the hexagonal prismatic honeycomb.

The hexagonal prism also exists as cells of four prismatic uniform convex honeycombs in 3 dimensions:

Triangular-hexagonal prismatic honeycomb
Snub triangular-hexagonal prismatic honeycomb
Rhombitriangular-hexagonal prismatic honeycomb

It also exists as cells of a number of four-dimensional uniform 4-polytopes, including:

truncated tetrahedral prism
truncated octahedral prism
Truncated cuboctahedral prism
Truncated icosahedral prism
Truncated icosidodecahedral prism
runcitruncated 5-cell
omnitruncated 5-cell
runcitruncated 16-cell
omnitruncated tesseract
runcitruncated 24-cell
omnitruncated 24-cell
runcitruncated 600-cell
omnitruncated 120-cell


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time