The thoracic diaphragm, or simply the diaphragm (; ), is a sheet of internal skeletal muscle
The term diaphragm in anatomy, created by Gerard of Cremona, can refer to other flat structures such as the urogenital diaphragm or Pelvic floor, but "the diaphragm" generally refers to the thoracic diaphragm. In humans, the diaphragm is slightly asymmetric—its right half is higher up (superior) to the left half, since the large liver rests beneath the right half of the diaphragm.
Other have diaphragms, and other such as and have diaphragm-like structures, but important details of the anatomy may vary, such as the position of the lungs in the thoracic cavity.
As a dome, the diaphragm has peripheral attachments to structures that make up the abdominal and chest walls. The muscle fibres from these attachments converge in a central tendon, which forms the crest of the dome. Its peripheral part consists of muscular fibers that take origin from the circumference of the inferior thoracic aperture and converge to be inserted into a central tendon.
The muscle fibres of the diaphragm radiate outward from the central tendon. While the diaphragm is one muscle, it is composed of two distinct muscle regions: the costal, which serves as the driver in the work of breathing, and crural diaphragm, which serves as an "anchor;" attaching the muscle to the lower ribs and lumbar vertebrae. The costal diaphragm is further divided into ventral, medial, and dorsal costal portions.
The vertebral part of the diaphragm arises from the crura and arcuate ligaments. Right crus arises from L1-L3 vertebral bodies and their intervertebral discs. Smaller left crus arises from L1, L2 vertebral bodies and their intervertebral discs.
The costal part of diaphragm arises from the lower four ribs (7 to 10) costal cartilages.
The central tendon of the diaphragm is a thin but strong aponeurosis near the center of the vault formed by the muscle, closer to the front than to the back of the thorax. The central part of the tendon is attached above to pericardium. The both sides of the posterior fibres are attached to paracolic gutters (the curving of ribs before attaching to both sides of the vertebral bodies).
The inferior vena cava passes through the caval opening, a quadrilateral opening at the junction of the right and middle leaflets of the central tendon, so that its margins are tendinous. Surrounded by tendons, the opening is stretched open every time inspiration occurs. However, there has been argument that the caval opening actually constricts during inspiration. Since thoracic pressure decreases upon inspiration and draws the caval blood upwards toward the right atrium, increasing the size of the opening allows more blood to return to the heart, maximizing the efficacy of lowered thoracic pressure returning blood to the heart. The aorta does not pierce the diaphragm but rather passes behind it in between the left and right crus.
There are several structures that pierce through the diaphragm, including: left phrenic nerve pierces through the central tendon, greater, lesser, and least thoracic splanchnic nerves pierces through bilateral crura, and lymphatic vessels that pierce throughout the diaphragm, especially behind the diaphragm.
+ Openings through the diaphragm and their content |
The caval opening passes through the central tendon of the diaphragm. It contains the inferior vena cava, and some branches of the right phrenic nerve. The outermost wall of inferior vena cava is fused with the central tendon. |
The esophageal hiatus is situated in the posterior part of the diaphragm, located slightly left of the west central tendon through the muscular sling of the right crus of the diaphragm. It contains the esophagus, and anterior and posterior vagus nerve, left gastric artery and veins, and lymphatics. |
The aortic hiatus is in the posterior part of the diaphragm, between the left and right crus. It contains the aorta, the thoracic duct and Azygos vein. |
sympathetic trunk, and least splanchic nerves |
Subcostal nerve and vessels |
the superior epigastric branch of the internal thoracic artery and some lymphatics from the abdominal wall and convex surface of the liver |
This interval is less constant; when this interval exists, the upper and back part of the kidney is separated from the pleura by areolar tissue only. |
From above, the diaphragm receives blood from branches of the internal thoracic arteries, namely the pericardiacophrenic artery and musculophrenic artery; from the superior phrenic arteries, which arise directly from the thoracic aorta; and from the lower internal intercostal arteries. From below, the inferior phrenic arteries supply the diaphragm.
The diaphragm drains blood into the brachiocephalic veins, , and veins that drain into the inferior vena cava and left suprarenal vein.
Because the earliest element of the embryological diaphragm, the septum transversum, forms in the cervical region, the phrenic nerve that innervates the diaphragm originates from the cervical spinal cord (C3,4, and 5). As the septum transversum descends inferiorly, the phrenic nerve follows, accounting for its circuitous route from the upper cervical vertebrae, around the pericardium, finally to innervate the diaphragm.
Cavity expansion happens in two extremes, along with intermediary forms. When the lower ribs are stabilized and the central tendon of the diaphragm is mobile, a contraction brings the insertion (central tendon) towards the origins and pushes the lower cavity towards the pelvis, allowing the thoracic cavity to expand downward. This is often called belly breathing. When the central tendon is stabilized and the lower ribs are mobile, a contraction lifts the origins (ribs) up towards the insertion (central tendon) which works in conjunction with other muscles to allow the ribs to slide and the thoracic cavity to expand laterally and upwards.
When the diaphragm relaxes (moves in the superior direction), air is exhaled by elastic recoil process of the lung and the tissues lining the thoracic cavity. Assisting this function with muscular effort (called forced exhalation) involves the internal intercostal muscles used in conjunction with the , which act as an antagonist paired with the diaphragm's contraction. Diaphragm dysfunction is a well-known factor associated with various complications in patients, such as prolonged respiratory failure, difficulties in weaning from mechanical ventilation, extended hospitalization, increased morbidity, and mortality. Studies have reported that a thin diaphragm leads to greater lung compliance, which can contribute to respiratory failure. Furthermore, reduction in diaphragm thickness during the early stages of disease can serve as a prognostic marker in sepsis patients, and COVID-19 patients.
The diaphragm is also involved in non-respiratory functions. It helps to expel vomiting, feces, and urine from the body by increasing intra-abdominal pressure, aids in childbirth, and prevents acid reflux by exerting pressure on the esophagus as it passes through the esophageal hiatus.
Hernias may also occur as a result of congenital malformation, a congenital diaphragmatic hernia. When the pleuroperitoneal membranes fail to fuse, the diaphragm does not act as an effective barrier between the abdomen and thorax. Herniation is usually of the left, and commonly through the posterior lumbocostal triangle, although rarely through the anterior foramen of Morgagni. The contents of the abdomen, including the , may be present in the thorax, which may impact development of the growing lungs and lead to hypoplasia. This condition is present in 0.8 - 5/10,000 births. A large herniation has high mortality rate, and requires immediate surgical repair.
An X-ray may also be used to check for herniation.
Thus the diaphragm emerges in the context of a body plan that separated an upper feeding compartment from a lower digestive tract, but the point at which it originates is a matter of definition. Structures in fish, amphibians, reptiles, and birds have been called diaphragms, but it has been argued that these structures are not homologous. For instance, the alligator diaphragmaticus muscle does not insert on the esophagus and does not affect pressure of the lower esophageal sphincter. The lungs are located in the abdominal compartment of amphibians and reptiles, so that contraction of the diaphragm expels air from the lungs rather than drawing it into them. In birds and mammals, lungs are located above the diaphragm. The presence of an exceptionally well-preserved fossil of Sinosauropteryx, with lungs located beneath the diaphragm as in crocodiles, has been used to argue that dinosaurs could not have sustained an active warm-blooded physiology, or that birds could not have evolved from dinosaurs. An explanation for this (put forward in 1905), is that lungs originated beneath the diaphragm, but as the demands for respiration increased in warm-blooded birds and mammals, natural selection came to favor the parallel evolution of the herniation of the lungs from the abdominal cavity in both lineages.
However, birds lack diaphragms. They do not breathe in the same way as mammals and do not rely on creating a negative pressure in the thoracic cavity, at least not to the same extent. They rely on a rocking motion of the keel of the sternum to create local areas of reduced pressure to supply thin, membranous airsacs cranially and caudally to the fixed-volume, non-expansive lungs. A complicated system of valves and air sacs cycles air constantly over the absorption surfaces of the lungs so allowing maximal efficiency of gaseous exchange. Thus, birds do not have the reciprocal tidal breathing flow of mammals. On careful dissection, around eight air sacs can be clearly seen. They extend quite far caudally into the abdomen.
|
|