In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, , and classical planet all orbit Earth. The geocentric model was the predominant description of the cosmos in many European Ancient history civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age.
Two observations supported the idea that Earth was the center of the Universe. First, from anywhere on Earth, the Sun appears to revolve around Earth diurnal motion. While the Moon and the planets have their own motions, they also appear to revolve around Earth about once per day. The stars appeared to be fixed stars on a celestial sphere rotating once each day about celestial pole through the of Earth. Second, Earth seems to be unmoving from the perspective of an earthbound observer; it feels solid, stable, and stationary.
ancient Greece, ancient Rome, and Middle Ages philosophers usually combined the geocentric model with a spherical Earth, in contrast to the older flat Earth model implied in some mythology. However, the Greek astronomer and mathematician Aristarchus of Samos () developed a heliocentric model placing all of the then-known planets in their correct order around the Sun. The ancient Greeks believed that the motions of the planets were circular orbit, a view that was not challenged in Western culture until the 17th century, when Johannes Kepler postulated that orbits were heliocentric and elliptic orbit (Kepler's first law of planetary motion). In 1687, Isaac Newton showed that elliptical orbits could be derived from his laws of gravitation.
The astronomical predictions of Ptolemy's geocentric model, developed in the 2nd century of the Christian era, served as the basis for preparing astrology and star chart for over 1,500 years. The geocentric model held sway into the early modern age, but from the late 16th century onward, it was gradually superseded by the heliocentric model of Copernicus, Galileo Galilei, and Kepler. There was much resistance to the transition between these two theories, since for a long time the geocentric postulate produced more accurate results. Additionally some felt that a new, unknown theory could not subvert an accepted consensus for geocentrism.
In the 4th century BC Plato and his student Aristotle, wrote works based on the geocentric model. According to Plato, the Earth was a sphere, stationary at the center of the universe. The stars and planets were carried around the Earth on spheres or circles, arranged in the order (outwards from the center): Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, fixed stars, with the fixed stars located on the celestial sphere. In his "Myth of Er", a section of the Republic, Plato describes the cosmos as the Spindle of Necessity, attended by the Sirens and turned by the three Moirai. Eudoxus of Cnidus, who worked with Plato, developed a less mythical, more mathematical explanation of the planets' motion based on Plato's dictum stating that all phenomena in the heavens can be explained with uniform circular motion. Aristotle elaborated on Eudoxus' system.
In the fully developed Aristotelian system, the spherical Earth is at the center of the universe, and all other heavenly bodies are attached to 47–55 transparent, rotating spheres surrounding the Earth, all concentric with it. (The number is so high because several spheres are needed for each planet.) These spheres, known as crystalline spheres, all moved at different uniform speeds to create the revolution of bodies around the Earth. They were composed of an incorruptible substance called aether. Aristotle believed that the Moon was in the innermost sphere and therefore touches the realm of Earth, causing the dark spots (maculae) and the ability to go through lunar phases. He further described his system by explaining the natural tendencies of the terrestrial elements: earth, water, fire, air, as well as celestial aether. His system held that earth was the heaviest element, with the strongest movement towards the center, thus water formed a layer surrounding the sphere of Earth. The tendency of air and fire, on the other hand, was to move upwards, away from the center, with fire being lighter than air. Beyond the layer of fire, were the solid spheres of aether in which the celestial bodies were embedded. They were also entirely composed of aether.
Adherence to the geocentric model stemmed largely from several important observations. First of all, if the Earth did move, then one ought to be able to observe the shifting of the fixed stars due to stellar parallax. Thus if the Earth was moving, the shapes of the should change considerably over the course of a year. As they did not appear to move, either the stars are much farther away than the Sun and the planets than previously conceived, making their motion undetectable, or the Earth is not moving at all. Because the stars are actually much further away than Greek astronomers postulated (making angular movement extremely small), stellar parallax was not detected until the 19th century. Therefore, the Greeks chose the simpler of the two explanations. Another observation used in favor of the geocentric model at the time was the apparent consistency of Venus' luminosity, which implies that it is usually about the same distance from Earth, which in turn is more consistent with geocentrism than heliocentrism. (In fact, Venus' luminous consistency is due to any loss of light caused by its phases being compensated for by an increase in apparent size caused by its varying distance from Earth.) Objectors to heliocentrism noted that terrestrial bodies naturally tend to come to rest as near as possible to the center of the Earth. Further, barring the opportunity to fall closer the center, terrestrial bodies tend not to move unless forced by an outside object, or transformed to a different element by heat or moisture.
Atmospheric explanations for many phenomena were preferred because the Eudoxan–Aristotelian model based on perfectly concentric spheres was not intended to explain changes in the brightness of the planets due to a change in distance. Eventually, perfectly concentric spheres were abandoned as it was impossible to develop a sufficiently accurate model under that ideal, with the mathematical methods then available. However, while providing for similar explanations, the later deferent and epicycle model was already flexible enough to accommodate observations.
Ptolemy argued that the Earth was a sphere in the center of the universe, from the simple observation that half the stars were above the horizon and half were below the horizon at any time (stars on rotating stellar sphere), and the assumption that the stars were all at some modest distance from the center of the universe. If the Earth were substantially displaced from the center, this division into visible and invisible stars would not be equal.
The deferent-and-epicycle model had been used by Greek astronomers for centuries along with the idea of the eccentric (a deferent whose center is slightly away from the Earth), which was even older. In the illustration, the center of the deferent is not the Earth but the spot marked X, making it eccentric (from the Greek language ἐκ ec- meaning "from" and κέντρον kentron meaning "center"), from which the spot takes its name. Unfortunately, the system that was available in Ptolemy's time did not quite match , even though it was an improvement over Hipparchus' system. Most noticeably the size of a planet's retrograde loop (especially that of Mars) would be smaller, or sometimes larger, than expected, resulting in positional errors of as much as 30 degrees. To alleviate the problem, Ptolemy developed the equant. The equant was a point near the center of a planet's orbit where, if you were to stand there and watch, the center of the planet's epicycle would always appear to move at uniform speed; all other locations would see non-uniform speed, as on the Earth. By using an equant, Ptolemy claimed to keep motion which was uniform and circular, although it departed from the Platonic ideal of uniform circular motion. The resultant system, which eventually came to be widely accepted in the west, seems unwieldy to modern astronomers; each planet required an epicycle revolving on a deferent, offset by an equant which was different for each planet. It predicted various celestial motions, including the beginning and end of retrograde motion, to within a maximum error of 10 degrees, considerably better than without the equant.
The model with epicycles is in fact a very good model of an elliptical orbit with low eccentricity. The well-known ellipse shape does not appear to a noticeable extent when the eccentricity is less than 5%, but the offset distance of the "center" (in fact the focus occupied by the Sun) is very noticeable even with low eccentricities as possessed by the planets.
To summarize, Ptolemy conceived a system that was compatible with Aristotelian philosophy and succeeded in tracking actual observations and predicting future movement mostly to within the limits of the next 1000 years of observations. The observed motions and his mechanisms for explaining them include:
>+ The Ptolemaic system ! Object(s) ! Observation ! Modeling mechanism | |||
Stars | Westward motion of entire sky in ~24 hrs ("first motion") | celestial sphere]], carrying all other spheres with it; normally ignored; other spheres have additional motions | |
Sun | Eastward motion yearly along [[ecliptic]] | Eastward motion of Sun's sphere in one year | |
Sun | Non-uniform rate along ecliptic (uneven seasons) | Eccentric orbit (Sun's deferent center off Earth) | |
Moon | Monthly eastward motion compared to stars | Monthly eastward motion of Moon's sphere | |
The 5 planets | General eastward motion through [[zodiac]] | Eastward motion of deferents; period set by observation of planet going around the ecliptic | |
Planets | Retrograde motion | Motion of epicycle in same direction as deferent. Period of epicycle is time between retrograde motions ([[synodic period]]). | |
Planets | Variations in speed through the zodiac | Eccentric per planet | |
Planets | Variations in retrograde timing | Equants per planet (Copernicus used a pair of epicycles instead) | |
Planets | Size of deferents, epicycles | Only ratio between radius of deferent and associated epicycle determined; absolute distances not determined in theory | |
inferior planet]] | Average greatest elongations of 23° (Mercury) and 46° (Venus) | Size of epicycles set by these angles, proportional to distances | |
Interior planets | Limited to movement near the Sun | Center their deferent centers along the Sun–Earth line | |
superior planet]] | Retrograde only at opposition, when brightest | Radii of epicycles aligned to the Sun–Earth line |
The geocentric model was eventually replaced by the heliocentric model. Copernican heliocentrism could remove Ptolemy's epicycles because the retrograde motion could be seen to be the result of the combination of the movements and speeds of Earth and planets. Copernicus felt strongly that equants were a violation of Aristotelian purity, and proved that replacement of the equant with a pair of new epicycles was entirely equivalent. Astronomers often continued using the equants instead of the epicycles because the former was easier to calculate, and gave the same result.
It has been determined that the Copernican, Ptolemaic and even the Tychonic system models provide identical results to identical inputs: they are computationally equivalent. It was not until Kepler demonstrated a physical observation that could show that the physical Sun is directly involved in determining an orbit that a new model was required.
The Ptolemaic order of spheres from Earth outward is:
Ptolemy did not invent or work out this order, which aligns with the ancient Seven Heavens common to the major Eurasian religious traditions. It also follows the decreasing orbital periods of the Moon, Sun, planets and stars.
According to the geometers or ( muhandisīn), the Earth is in constant circular motion, and what appears to be the motion of the heavens is actually due to the motion of the Earth and not the stars.Early in the 11th century, Alhazen wrote a scathing critique of Ptolemy's model in his Doubts on Ptolemy (), which some have interpreted to imply he was criticizing Ptolemy's geocentrism, but most agree that he was actually criticizing the details of Ptolemy's model rather than his geocentrism. Nicolaus Copernicus, Stanford Encyclopedia of Philosophy (2004). In the 12th century, Arzachel departed from the ancient Greek idea of uniform circular motions by hypothesizing that the planet Mercury moves in an elliptic orbit, while Alpetragius proposed a planetary model that abandoned the equant, epicycle and eccentric mechanisms, though this resulted in a system that was mathematically less accurate. His alternative system spread through most of Europe during the 13th century.(2006). 9780521028875, Cambridge University Press. ISBN 9780521028875
Fakhr al-Din al-Razi (1149–1209), in dealing with his conception of physics and the physical world in his Matalib, rejects the Aristotelianism and Avicennism notion of the Earth's centrality within the universe, but instead argues that there are "a thousand thousand worlds ( alfa alfi 'awalim) beyond this world, such that each one of those worlds be bigger and more massive than this world, as well as having the like of what this world has." To support his Islamic theology, he cites the Qur'anic verse, "All praise belongs to God, Lord of the Worlds", emphasizing the term "Worlds".
The "Maragha Revolution" refers to the Maragha school's revolution against Ptolemaic astronomy. The "Maragha school" was an astronomical tradition beginning in the Maragha observatory and continuing with astronomers from the Umayyad Mosque and Samarkand observatory. Like their Al-Andalus predecessors, the Maragha astronomers attempted to solve the equant problem (the circle around whose circumference a planet or the center of an epicycle was conceived to move uniformly) and produce alternative configurations to the Ptolemaic model without abandoning geocentrism. They were more successful than their Andalusian predecessors in producing non-Ptolemaic configurations which eliminated the equant and eccentrics, were more accurate than the Ptolemaic model in numerically predicting planetary positions, and were in better agreement with empirical observations. The most important of the Maragha astronomers included Mo'ayyeduddin Urdi (died 1266), Nasīr al-Dīn al-Tūsī (1201–1274), Qutb al-Din al-Shirazi (1236–1311), Ibn al-Shatir (1304–1375), Ali Qushji (), Al-Birjandi (died 1525), and Shams al-Din al-Khafri (died 1550).
However, the Maragha school never made the paradigm shift to heliocentrism. The influence of the Maragha school on Copernicus remains speculative, since there is no documentary evidence to prove it. The possibility that Copernicus independently developed the Tusi couple remains open, since no researcher has yet demonstrated that he knew about Tusi's work or that of the Maragha school.
Consequently, he introduced a new system, the Tychonic system, in which the Earth was still at the center of the universe, and around it revolved the Sun, but all the other planets revolved around the Sun in a set of epicycles. His model considered both the benefits of the Copernican model and the lack of evidence for the Earth's motion.
In December 1610, Galileo Galilei used his telescope to observe that Venus showed all phases, just lunar phase. He thought that while this observation was incompatible with the Ptolemaic system, it was a natural consequence of the heliocentric system.
However, Ptolemy placed Venus' deferent and epicycle entirely inside the sphere of the Sun (between the Sun and Mercury), but this was arbitrary; he could just as easily have swapped Venus and Mercury and put them on the other side of the Sun, or made any other arrangement of Venus and Mercury, as long as they were always near a line running from the Earth through the Sun, such as placing the center of the Venus epicycle near the Sun. In this case, if the Sun is the source of all the light, under the Ptolemaic system:
But Galileo saw Venus at first small and full, and later large and crescent. This showed that with a Ptolemaic cosmology, the Venus epicycle can be neither completely inside nor completely outside of the orbit of the Sun. As a result, Ptolemaics abandoned the idea that the epicycle of Venus was completely inside the Sun, and later 17th-century competition between astronomical cosmologies focused on variations of the Tychonic or Copernican systems.
Maurice Finocchiaro, author of a book on the Galileo affair, notes that this is "a view of the relationship between biblical interpretation and scientific investigation that corresponds to the one advanced by Galileo in the "Letter to the Grand Duchess Christina". Pope Pius XII repeated his predecessor's teaching:
In 1664, Pope Alexander VII republished the Index Librorum Prohibitorum ( List of Prohibited Books) and attached the various decrees connected with those books, including those concerned with heliocentrism. He stated in a papal bull that his purpose in doing so was that "the succession of things done from the beginning might be made known ''quo".
The position of the curia evolved slowly over the centuries towards permitting the heliocentric view. In 1757, during the papacy of Benedict XIV, the Congregation of the Index withdrew the decree that prohibited all books teaching the Earth's motion, although the Dialogue and a few other books continued to be explicitly included. In 1820, the Congregation of the Holy Office, with the pope's approval, decreed that Catholic astronomer Giuseppe Settele was allowed to treat the Earth's motion as an established fact and removed any obstacle for Catholics to hold to the motion of the Earth:
In 1822, the Congregation of the Holy Office removed the prohibition on the publication of books treating of the Earth's motion in accordance with modern astronomy and Pope Pius VII ratified the decision:
The 1835 edition of the Catholic List of Prohibited Books for the first time omits the Dialogue from the list. In his 1921 papal encyclical, In praeclara summorum, Pope Benedict XV stated that, "though this Earth on which we live may not be the center of the universe as at one time was thought, it was the scene of the original happiness of our first ancestors, witness of their unhappy fall, as too of the Redemption of mankind through the Passion and Death of Jesus Christ". In 1965 the Second Vatican Council stated that, "Consequently, we cannot but deplore certain habits of mind, which are sometimes found too among Christians, which do not sufficiently attend to the rightful independence of science and which, from the arguments and controversies they spark, lead many minds to conclude that faith and science are mutually opposed." The footnote on this statement is to Msgr. Pio Paschini's, Vita e opere di Galileo Galilei, 2 volumes, Vatican Press (1964). Pope John Paul II regretted the treatment that Galileo received, in a speech to the Pontifical Academy of Sciences in 1992. The Pope declared the incident to be based on a "tragic mutual miscomprehension". He further stated:
In 1687, Isaac Newton stated the law of universal gravitation, which was described earlier as a hypothesis by Robert Hooke and others. His main achievement was to mathematically derive Kepler's laws of planetary motion from the law of gravitation, thus helping to prove the latter. This introduced gravitation as the force which kept Earth and the planets moving through the universe, and also kept the atmosphere from flying away. The theory of gravity allowed scientists to rapidly construct a plausible heliocentric model for the Solar System. In his Principia, Newton explained his theory of how gravity, previously thought to be a mysterious, unexplained occult force, directed the movements of celestial bodies, and kept our Solar System in working order. His descriptions of centripetal force were a breakthrough in scientific thought, using the newly developed mathematical discipline of differential calculus, finally replacing the previous schools of scientific thought, which had been dominated by Aristotle and Ptolemy. However, the process was gradual.
Several empirical tests of Newton's theory, explaining the longer period of oscillation of a pendulum at the equator and the differing size of a degree of latitude, would gradually become available between 1673 and 1738. In addition, stellar aberration was observed by Robert Hooke in 1674, and tested in a series of observations by Jean Picard over a period of ten years, finishing in 1680. However, it was not explained until 1729, when James Bradley provided an approximate explanation in terms of the Earth's revolution about the Sun.
In 1838, astronomer Friedrich Wilhelm Bessel measured the parallax of the star 61 Cygni successfully, and disproved Ptolemy's claim that parallax motion did not exist. This finally confirmed the assumptions made by Copernicus, providing accurate, dependable scientific observations, and conclusively displaying how distant stars are from Earth.
A geocentric frame is useful for many everyday activities and most laboratory experiments, but is a less appropriate choice for Solar System mechanics and space travel. While a Heliocentrism is most useful in those cases, galactic and extragalactic astronomy is easier if the Sun is treated as neither stationary nor the center of the universe, but rather rotating around the center of our galaxy, while in turn our galaxy is also not at rest in the cosmic background.
Despite giving more respectability to the geocentric view than Newtonian physics does,
Relativity agrees with Newtonian predictions that regardless of whether the Sun or the Earth are chosen arbitrarily as the center of the coordinate system describing the Solar System, the paths of the planets form (roughly) ellipses with respect to the Sun, not the Earth. With respect to the average reference frame of the fixed stars, the planets do indeed move around the Sun, which due to its much larger mass, moves far less than its own diameter and the gravity of which is dominant in determining the orbits of the planets (in other words, the center of mass of the Solar System is near the center of the Sun). The Earth and Moon are much closer to being a binary planet; the center of mass around which they both rotate is still inside the Earth, but is about or 72.6% of the Earth's radius away from the centre of the Earth (thus closer to the surface than the center).
What the principle of relativity points out is that correct mathematical calculations can be made regardless of the reference frame chosen, and these will all agree with each other as to the predictions of actual motions of bodies with respect to each other. It is not necessary to choose the object in the Solar System with the largest gravitational field as the center of the coordinate system in order to predict the motions of planetary bodies, though doing so may make calculations easier to perform or interpret. A geocentric coordinate system can be more convenient when dealing only with bodies mostly influenced by the gravity of the Earth (such as artificial satellites and the Moon), or when calculating what the sky will look like when viewed from Earth (as opposed to an imaginary observer looking down on the entire Solar System, where a different coordinate system might be more convenient).
Articles arguing that geocentrism was the biblical perspective appeared in some early creation science newsletters. Contemporary advocates for such include Robert Sungenis (author of the 2006 book Galileo Was Wrong and the 2014 pseudo-documentary film The Principle). Most contemporary creationist organizations reject such perspectives. A few Orthodox Judaism leaders maintain a geocentric model of the universe and an interpretation of Maimonides to the effect that he ruled that the Earth is orbited by the Sun. The Lubavitcher Rebbe also explained that geocentrism is defensible based on the theory of relativity. While geocentrism is important in Maimonides' calendar calculations, the great majority of Jewish religious scholars, who accept the divinity of the Bible and accept many of his rulings as legally binding, do not believe that the Bible or Maimonides command a belief in geocentrism. There have been some modern Islamic scholars who promoted geocentrism. One of them was Ahmed Raza Khan Barelvi, a Sunni scholar of the Indian subcontinent. He rejected the heliocentric model and wrote a book that explains the movement of the sun, moon and other planets around the Earth.
According to a report released in 2014 by the National Science Foundation, 26% of Americans surveyed believe that the Sun revolves around the Earth. Morris Berman quotes a 2006 survey that show currently some 20% of the U.S. population believe that the Sun goes around the Earth (geocentricism) rather than the Earth goes around the Sun (heliocentricism), while a further 9% claimed not to know. Polls conducted by Gallup in the 1990s found that 16% of Germans, 18% of Americans and 19% of Britons hold that the Sun revolves around the Earth. A study conducted in 2005 by Jon D. Miller of Northwestern University, an expert in the public understanding of science and technology, found that about 20%, or one in five, of American adults believe that the Sun orbits the Earth. According to 2011 VTSIOM poll, 32% of Russians believe that the Sun orbits the Earth.
|
|