A galaxy is a Physical system of , , interstellar gas, cosmic dust, and dark matter bound together by gravity. The word is derived from the Ancient Greek (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarf galaxy with less than a thousand stars, to the largest galaxies known – Type-cD galaxy with one hundred trillion stars, each orbiting its galaxy's centre of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few per cent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.
Galaxies are categorised according to their visual morphology as elliptical, Spiral galaxy, or irregular galaxy. The Milky Way is an example of a spiral galaxy. It is estimated that there are between 200 billion () to 2 trillion galaxies in the observable universe. Most galaxies are 1,000 to 100,000 in diameter (approximately 3,000 to 300,000 ) and are separated by distances in the order of millions of parsecs (or megaparsecs). For comparison, the Milky Way has a diameter of at least 26,800 parsecs (87,400 ly) and is separated from the Andromeda Galaxy, its nearest large neighbour, by just over 750,000 parsecs (2.5 million ly).
The space between galaxies is filled with a tenuous gas (the intergalactic medium) with an average density of less than one atom per cubic metre. Most galaxies are gravitationally organised into galaxy group, galaxy cluster and . The Milky Way is part of the Local Group, which it dominates along with the Andromeda Galaxy. The group is part of the Virgo Supercluster. At the largest scale, these associations are generally arranged into galaxy filament surrounded by immense voids. Both the Local Group and the Virgo Supercluster are contained in a much larger cosmic structure named Laniakea.
Galaxies were initially discovered telescopically and were known as . Most 18th- to 19th-century astronomers considered them as either unresolved or extragalactic nebulae, but their true composition and natures remained a mystery. Observations using larger telescopes of a few nearby bright galaxies, like the Andromeda Galaxy, began resolving them into huge conglomerations of stars, but based simply on the apparent faintness and sheer population of stars, the true distances of these objects placed them well beyond the Milky Way. For this reason they were popularly called island universes. Harlow Shapley began to advocate for the term "galaxy" and against using "universes" and "nebula" for the objects but the very influential Edwin Hubble stuck to nebulae. The nomenclature did not fully change in until Hubble's death in 1953.Bartusiak, M. (2010). The Day We Found the Universe. United States: Knopf Doubleday Publishing Group.
According to Mohani Mohamed, Arabian astronomer Ibn al-Haytham (965–1037) made the first attempt at observing and measuring the Milky Way's parallax, and he thus "determined that because the Milky Way had no parallax, it must be remote from the Earth, not belonging to the atmosphere." Persian people astronomer al-Biruni (973–1048) proposed the Milky Way galaxy was "a collection of countless fragments of the nature of nebulous stars." Al-Andalus astronomer Avempace ( 1138) proposed that it was composed of many stars that almost touched one another, and appeared to be a continuous image due to the effect of refraction from sublunary material, citing his observation of the conjunction of Jupiter and Mars as evidence of this occurring when two objects were near. In the 14th century, Syrian-born Ibn Qayyim al-Jawziyya proposed the Milky Way galaxy was "a myriad of tiny stars packed together in the sphere of the fixed stars."
Actual proof of the Milky Way consisting of many stars came in 1610 when the Italian astronomer Galileo Galilei used a telescope to study it and discovered it was composed of a huge number of faint stars. In 1750, English astronomer Thomas Wright, in his An Original Theory or New Hypothesis of the Universe, correctly speculated that it might be a rotating body of a huge number of stars held together by forces, akin to the Solar System but on a much larger scale, and that the resulting disk of stars could be seen as a band on the sky from a perspective inside it. In his 1755 treatise, Immanuel Kant elaborated on Wright's idea about the Milky Way's structure. in 1785; the Solar System was assumed to be near the center.]]
The first project to describe the shape of the Milky Way and the position of the Sun was undertaken by William Herschel in 1785 by counting the number of stars in different regions of the sky. He produced a diagram of the shape of the galaxy with Galactocentrism. Using a refined approach, Jacobus Kapteyn in 1920 arrived at the picture of a small (diameter about 15 kiloparsecs) ellipsoid galaxy with the Sun close to the center. A different method by Harlow Shapley based on the cataloguing of led to a radically different picture: a flat disk with diameter approximately 70 kiloparsecs and the Sun far from the centre. Both analyses failed to take into account the absorption of light by cosmic dust present in the galactic plane; but after Robert Julius Trumpler quantified this effect in 1930 by studying , the present picture of the Milky Way galaxy emerged.
In 1734, philosopher Emanuel Swedenborg in his Principia speculated that there might be other galaxies outside that were formed into galactic clusters that were minuscule parts of the universe that extended far beyond what could be seen. Swedenborg's views "are remarkably close to the present-day views of the cosmos."
In 1745, Pierre Louis Maupertuis conjectured that some nebula-like objects were collections of stars with unique properties, including a glow exceeding the light its stars produced on their own, and repeated Johannes Hevelius's view that the bright spots were massive and flattened due to their rotation.
In 1750, Thomas Wright correctly speculated that the Milky Way was a flattened disk of stars, and that some of the nebulae visible in the night sky might be separate Milky Ways.
Toward the end of the 18th century, Charles Messier compiled a Messier object containing the 109 brightest celestial objects having nebulous appearance. Subsequently, William Herschel assembled a catalog of 5,000 nebulae. In 1845, Lord Rosse examined the nebulae catalogued by Herschel and observed the spiral structure of Whirlpool Galaxy, now known as the Whirlpool Galaxy.
In 1912, Vesto M. Slipher made spectrographic studies of the brightest spiral nebulae to determine their composition. Slipher discovered that the spiral nebulae have high , indicating that they are moving at a rate exceeding the velocity of the stars he had measured. He found that the majority of these nebulae are moving away from us.
In 1917, Heber Doust Curtis observed nova S Andromedae within the "Great Andromeda Nebula", as the Andromeda Galaxy, Messier object Andromeda Galaxy, was then known. Searching the photographic record, he found 11 more . Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within this galaxy. As a result, he was able to come up with a distance estimate of 150,000 . He became a proponent of the so-called "island universes" hypothesis, which holds that spiral nebulae are actually independent galaxies.
In 1920 a debate took place between Harlow Shapley and Heber Curtis, the Great Debate, concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim that the Great Andromeda Nebula is an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in the Milky Way, as well as the significant Doppler shift.
In 1922, the astronomer Ernst Öpik gave a distance determination that supported the theory that the Andromeda Nebula is indeed a distant extra-galactic object. Using the new 100-inch Mount Wilson telescope, Edwin Hubble was able to resolve the outer parts of some spiral nebulae as collections of individual stars and identified some , thus allowing him to estimate the distance to the nebulae: they were far too distant to be part of the Milky Way. In 1926 Hubble produced a classification of galactic morphology that is used to this day.
The cosmic dust present in the interstellar medium is opaque to visual light. It is more transparent to far-infrared, which can be used to observe the interior regions of giant molecular clouds and galactic cores in great detail. Infrared is also used to observe distant, redshift galaxies that were formed much earlier. Water vapor and carbon dioxide absorb a number of useful portions of the infrared spectrum, so high-altitude or space-based telescopes are used for infrared astronomy.
The first non-visual study of galaxies, particularly active galaxies, was made using radio astronomy. The Earth's atmosphere is nearly transparent to radio between 5 Hertz and 30 GHz. The ionosphere blocks signals below this range. Large radio interferometry have been used to map the active jets emitted from active nuclei.
UV astronomy and X-ray astronomy can observe highly energetic galactic phenomena. Ultraviolet flares are sometimes observed when a star in a distant galaxy is torn apart from the tidal forces of a nearby black hole. The distribution of hot gas in galactic clusters can be mapped by X-rays. The existence of supermassive black holes at the cores of galaxies was confirmed through X-ray astronomy.
Beginning in the 1990s, the Hubble Space Telescope yielded improved observations. Among other things, its data helped establish that the missing dark matter in this galaxy could not consist solely of inherently faint and small stars. The Hubble Deep Field, an extremely long exposure of a relatively empty part of the sky, provided evidence that there are about 125 billion () galaxies in the observable universe. Improved technology in detecting the spectra invisible to humans (radio telescopes, infrared cameras, and x-ray astronomy) allows detection of other galaxies that are not detected by Hubble. Particularly, surveys in the Zone of Avoidance (the region of sky blocked at visible-light wavelengths by the Milky Way) have revealed a number of new galaxies.
A 2016 study published in The Astrophysical Journal, led by Christopher Conselice of the University of Nottingham, analyzed many sources of data to estimate that the observable universe (up to z=8) contained at least two trillion () galaxies, a factor of 10 more than are directly observed in Hubble images. However, later observations with the New Horizons space probe from outside the zodiacal light observed less cosmic optical light than Conselice while still suggesting that direct observations are missing galaxies.
Many galaxies are thought to contain a supermassive black hole at their center. This includes the Milky Way, whose core region is called the Galactic Center.
The formation of these cD galaxies remains an active area of research, but the leading model is that they are the result of the mergers of smaller galaxies in the environments of dense clusters, or even those outside of clusters with random overdensities. These processes are the mechanisms that drive the formation of fossil groups or fossil clusters, where a large, relatively isolated, supergiant elliptical resides in the middle of the cluster and are surrounded by an extensive cloud of X-rays as the residue of these galactic collisions. Another older model posits the phenomenon of cooling flow, where the heated gases in clusters collapses towards their centers as they cool, forming stars in the process, a phenomenon observed in clusters such as Perseus Cluster, and more recently in the Phoenix Cluster.
Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the bulge are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type S, followed by a letter ( a, b, or c) which indicates the degree of tightness of the spiral arms and the size of the central bulge. An Sa galaxy has tightly wound, poorly defined arms and possesses a relatively large core region. At the other extreme, an Sc galaxy has open, well-defined arms and a small core region. A galaxy with poorly defined arms is sometimes referred to as a flocculent spiral galaxy; in contrast to the grand design spiral galaxy that has prominent and well-defined spiral arms. The speed in which a galaxy rotates is thought to correlate with the flatness of the disc as some spiral galaxies have thick bulges, while others are thin and dense.4
In spiral galaxies, the spiral arms do have the shape of approximate logarithmic spirals, a pattern that can be theoretically shown to result from a disturbance in a uniformly rotating mass of stars. Like the stars, the spiral arms rotate around the center, but they do so with constant angular velocity. The spiral arms are thought to be areas of high-density matter, or "density waves". As stars move through an arm, the space velocity of each stellar system is modified by the gravitational force of the higher density. (The velocity returns to normal after the stars depart on the other side of the arm.) This effect is akin to a "wave" of slowdowns moving along a highway full of moving cars. The arms are visible because the high density facilitates star formation, and therefore they harbor many bright and young stars.
Our own galaxy, the Milky Way, is a large disk-shaped barred-spiral galaxy about 30 kiloparsecs in diameter and a kiloparsec thick. It contains about two hundred billion (2×1011) stars and has a total mass of about six hundred billion (6×1011) times the mass of the Sun.
Many dwarf galaxies may orbit a single larger galaxy; the Milky Way has at least a dozen such satellites, with an estimated 300–500 yet to be discovered.
Most of the information we have about dwarf galaxies come from observations of the local group, containing two spiral galaxies, the Milky Way and Andromeda, and many dwarf galaxies. These dwarf galaxies are classified as either irregular galaxy or dwarf elliptical/dwarf spheroidal galaxies.
A study of 27 Milky Way neighbors found that in all dwarf galaxies, the central mass is approximately 10 million , regardless of whether it has thousands or millions of stars. This suggests that galaxies are largely formed by dark matter, and that the minimum size may indicate a form of warm dark matter incapable of gravitational coalescence on a smaller scale.
At the extreme of interactions are galactic mergers, where the galaxies' relative momentums are insufficient to allow them to pass through each other. Instead, they gradually merge to form a single, larger galaxy. Mergers can result in significant changes to the galaxies' original morphology. If one of the galaxies is much more massive than the other, the result is known as cannibalism, where the more massive larger galaxy remains relatively undisturbed, and the smaller one is torn apart. The Milky Way galaxy is currently in the process of cannibalizing the Sagittarius Dwarf Elliptical Galaxy and the Canis Major Dwarf Galaxy.
Starburst galaxies are characterized by dusty concentrations of gas and the appearance of newly formed stars, including massive stars that ionize the surrounding clouds to create H II regions. These stars produce supernova explosions, creating expanding remnants that interact powerfully with the surrounding gas. These outbursts trigger a chain reaction of star-building that spreads throughout the gaseous region. Only when the available gas is nearly consumed or dispersed does the activity end.
Starbursts are often associated with merging or interacting galaxies. The prototype example of such a starburst-forming interaction is M82, which experienced a close encounter with the larger M81. Irregular galaxies often exhibit spaced knots of starburst activity.
Radio galaxies can also be classified as giant radio galaxies (GRGs), whose radio emissions can extend to scales of megaparsecs (3.26 million light-years). Alcyoneus is an FR II class low-excitation radio galaxy which has the largest observed radio emission, with lobed structures spanning 5 megaparsecs (16×106 Light-year). For comparison, another similarly sized giant radio galaxy is 3C 236, with lobes 15 million light-years across. It should however be noted that radio emissions are not always considered part of the main galaxy itself.
A giant radio galaxy is a special class of objects characterized by the presence of radio lobes generated by relativistic jets powered by the central galaxy's supermassive black hole. Giant radio galaxies are different from ordinary radio galaxies in that they can extend to much larger scales, reaching upwards to several megaparsecs across, far larger than the diameters of their host galaxies.
A "normal" radio galaxy do not have a source that is a supermassive black hole or monster neutron star; instead the source is synchrotron radiation from relativistic electrons accelerated by supernova. These sources are comparatively short lived, making the radio spectrum from normal radio galaxies an especially good way to study star formation.
The standard model for an active galactic nucleus is based on an accretion disc that forms around a supermassive black hole (SMBH) at the galaxy's core region. The radiation from an active galactic nucleus results from the gravitational energy of matter as it falls toward the black hole from the disc. The AGN's luminosity depends on the SMBH's mass and the rate at which matter falls onto it.
In about 10% of these galaxies, a diametrically opposed pair of energetic jets ejects particles from the galaxy core at velocities close to the speed of light. The mechanism for producing these jets is not well understood.
Possibly related to active galactic nuclei (as well as starburst regions) are low-ionization nuclear emission-line regions (LINERs). The emission from LINER-type galaxies is dominated by weakly elements. The excitation sources for the weakly ionized lines include post-AGB stars, AGN, and shocks. Approximately one-third of nearby galaxies are classified as containing LINER nuclei.
In defining R e, it is necessary that the overall brightness flux galaxy should be captured, with a method employed by Bershady in 2000 suggesting to measure twice the size where the brightness flux of an arbitrarily chosen radius, defined as the local flux, divided by the overall average flux equals to 0.2. Using half-light radius allows a rough estimate of a galaxy's size, but is not particularly helpful in determining its morphology.
Variations of this method exist. In particular, in the ESO-Uppsala Catalogue of Galaxies values of 50%, 70%, and 90% of the total blue light (the light detected through a B-band specific filter) had been used to calculate a galaxy's diameter.
Petrosian magnitudes have the advantage of being redshift and distance independent, allowing the measurement of the galaxy's apparent size since the Petrosian radius is defined in terms of the galaxy's overall luminous flux.
A critique of an earlier version of this method has been issued by the Infrared Processing and Analysis Center, with the method causing a magnitude of error (upwards to 10%) of the values than using isophotal diameter. The use of Petrosian magnitudes also have the disadvantage of missing most of the light outside the Petrosian aperture, which is defined relative to the galaxy's overall brightness profile, especially for elliptical galaxies, with higher signal-to-noise ratios on higher distances and redshifts. A correction for this method has been issued by Graham et al. in 2005, based on the assumption that galaxies follow Sérsic's law.
The standard aperture ellipse (area of detection) is defined by the infrared isophote at the Ks band (roughly 2.2 μm wavelength) of 20 mag/arcsec2. Gathering the overall luminous flux of the galaxy has been employed by at least four methods: the first being a circular aperture extending 7 arcseconds from the center, an isophote at 20 mag/arcsec2, a "total" aperture defined by the radial light distribution that covers the supposed extent of the galaxy, and the Kron aperture (defined as 2.5 times the first-moment radius, an integration of the flux of the "total" aperture).
On the largest scale, the universe is continually expanding, resulting in an average increase in the separation between individual galaxies (see Hubble's law). Associations of galaxies can overcome this expansion on a local scale through their mutual gravitational attraction. These associations formed early, as clumps of dark matter pulled their respective galaxies together. Nearby groups later merged to form larger-scale clusters. This ongoing merging process, as well as an influx of infalling gas, heats the intergalactic gas in a cluster to very high temperatures of 30–100 . About 70–80% of a cluster's mass is in the form of dark matter, with 10–30% consisting of this heated gas and the remaining few percent in the form of galaxies.
Most galaxies are gravitationally bound to a number of other galaxies. These form a fractal-like hierarchical distribution of clustered structures, with the smallest such associations being termed groups. A group of galaxies is the most common type of galactic cluster; these formations contain the majority of galaxies (as well as most of the mass) in the universe. To remain gravitationally bound to such a group, each member galaxy must have a sufficiently low velocity to prevent it from escaping (see Virial theorem). If there is insufficient kinetic energy, however, the group may evolve into a smaller number of galaxies through mergers.
Clusters of galaxies consist of hundreds to thousands of galaxies bound together by gravity. Clusters of galaxies are often dominated by a single giant elliptical galaxy, known as the brightest cluster galaxy, which, over time, tidal force destroys its satellite galaxies and adds their mass to its own.
contain tens of thousands of galaxies, which are found in clusters, groups and sometimes individually. At the supercluster scale, galaxies are arranged into sheets and filaments surrounding vast empty voids. Above this scale, the universe appears to be the same in all directions (isotropy and ), though this notion has been challenged in recent years by numerous findings of large-scale structures that appear to be exceeding this scale. The Hercules–Corona Borealis Great Wall, currently the largest structure in the universe found so far, is 10 billion (three gigaparsecs) in length.
The Milky Way galaxy is a member of an association named the Local Group, a relatively small group of galaxies that has a diameter of approximately one megaparsec. The Milky Way and the Andromeda Galaxy are the two brightest galaxies within the group; many of the other member galaxies are dwarf companions of these two. The Local Group itself is a part of a cloud-like structure within the Virgo Supercluster, a large, extended structure of groups and clusters of galaxies centered on the Virgo Cluster. In turn, the Virgo Supercluster is a portion of the Laniakea Supercluster.
The typical average equipartition strength for Spiral galaxy is about 10 μG (microgauss) or 1nT (nanotesla). By comparison, the Earth's magnetic field has an average strength of about 0.3 G (Gauss) or 30 μT (microtesla). Radio-faint galaxies like Andromeda Galaxy and M33, the Milky Way's neighbors, have weaker fields (about 5μG), while gas-rich galaxies with high star-formation rates, like M 51, M 83 and NGC 6946, have 15 μG on average. In prominent spiral arms, the field strength can be up to 25 μG, in regions where cold gas and dust are also concentrated. The strongest total equipartition fields (50–100 μG) were found in Starburst galaxy—for example, in M 82 and the Antennae; and in nuclear starburst regions, such as the centers of NGC 1097 and other barred galaxies.
As gas falls in to the gravity of the dark matter halos, its pressure and temperature rise. To condense further, the gas must radiate energy. This process was slow in the early universe dominated by hydrogen atoms and molecules which are inefficient radiators compared to heavier elements. As clumps of gas aggregate forming rotating disks, temperatures and pressures continue to increase. Some places within the disk reach high enough density to form stars.
Once protogalaxies began to form and contract, the first , called Population III stars, appeared within them. These were composed of primordial gas, almost entirely of hydrogen and helium.
Emission from the first stars heats the remaining gas helping to trigger additional star formation; the ultraviolet light emission from the first generation of stars re-ionized the surrounding neutral hydrogen in expanding spheres eventually reaching the entire universe, an event called reionization. The most massive stars collapse in violent supernova explosions releasing heavy elements ("metals") into the interstellar medium. This metal content is incorporated into population II stars.
Theoretical models for early galaxy formation have been verified and informed by a large number and variety of sophisticated astronomical observations. The photometric observations generally need spectroscopic confirmation due the large number mechanisms that can introduce systematic errors. For example, a high redshift (z ~ 16) photometric observation by James Webb Space Telescope (JWST) was later corrected to be closer to z ~ 5.
Nevertheless, confirmed observations from the JWST and other observatories are accumulating, allowing systematic comparison of early galaxies to predictions of theory.
Evidence for individual Population III stars in early galaxies is even more challenging. Even seemingly confirmed spectroscopic evidence may turn out to have other origins. For example, astronomers reported HeII emission evidence for Population III stars in the Cosmos Redshift 7 galaxy, with a redshift value of 6.60. Subsequent observations found metallic emission lines, OIII, inconsistent with an early-galaxy star.
Within a billion years of a galaxy's formation, key structures begin to appear. , the central supermassive black hole, and a galactic bulge of metal-poor metallicity form. The creation of a supermassive black hole appears to play a key role in actively regulating the growth of galaxies by limiting the total amount of additional matter added. During this early epoch, galaxies undergo a major burst of star formation.
During the following two billion years, the accumulated matter settles into a galactic disc. A galaxy will continue to absorb infalling material from high-velocity clouds and dwarf galaxy throughout its life. This matter is mostly hydrogen and helium. The cycle of stellar birth and death slowly increases the abundance of heavy elements, eventually allowing the formation of .
Star formation rates in galaxies depend upon their local environment. Isolated 'void' galaxies have highest rate per stellar mass, with 'field' galaxies associated with spiral galaxies having lower rates and galaxies in dense cluster having the lowest rates.
The evolution of galaxies can be significantly affected by interactions and collisions. Mergers of galaxies were common during the early epoch, and the majority of galaxies were peculiar in morphology. Given the distances between the stars, the great majority of stellar systems in colliding galaxies will be unaffected. However, gravitational stripping of the interstellar gas and dust that makes up the spiral arms produces a long train of stars known as tidal tails. Examples of these formations can be seen in NGC 4676 or the Antennae Galaxies.
The Milky Way galaxy and the nearby Andromeda Galaxy are moving toward each other at about 130 km/s, and—depending upon the lateral movements—the two might collide in about five to six billion years. Although the Milky Way has never collided with a galaxy as large as Andromeda before, it has collided and merged with other galaxies in the past. Cosmological simulations indicate that, 11 billion years ago, it merged with a particularly large galaxy that has been labeled the Kraken galaxy.
Such large-scale interactions are rare. As time passes, mergers of two systems of equal size become less common. Most bright galaxies have remained fundamentally unchanged for the last few billion years, and the net rate of star formation probably also peaked about ten billion years ago.
The current era of star formation is expected to continue for up to one hundred billion years, and then the "stellar age" will wind down after about ten trillion to one hundred trillion years (1013–1014 years), as the smallest, longest-lived stars in the visible universe, tiny , begin to fade. At the end of the stellar age, galaxies will be composed of compact star: , that are cooling or cold (""), , and . Eventually, as a result of gravitational relaxation, all stars will either fall into central supermassive black holes or be flung into intergalactic space as a result of collisions.
Etymology
Nomenclature
Observation history
Milky Way
Distinction from other nebulae
Multi-wavelength observation
Modern research
Types and morphology
Ellipticals
Type-cD galaxies
Shell galaxy
Spirals
Barred spiral galaxy
Super-luminous spiral
Other morphologies
Dwarfs
Variants
Interacting
Starburst
Radio galaxy
Active galaxy
Seyfert galaxy
Quasar
Other AGNs
Luminous infrared galaxy
Physical diameters
Angular diameter
Isophotal diameter
+ Examples of isophotal diameters (25.0 B-mag/arcsec2 isophote)
Effective radius (half-light) and its variations
Petrosian magnitude
Near-infrared method
Larger-scale structures
Magnetic fields
Formation and evolution
Formation
Evolution
Future trends
Gallery
See also
Notes
Bibliography
External links
|
|