The fundamental frequency, often referred to simply as the fundamental (abbreviated as 0 or 1 ), is defined as the lowest frequency of a Periodic signal waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of Sine wave, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as 0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as 1, the first harmonic. (The second harmonic is then 2 = 2⋅1, etc.)
According to Benward and Saker's Music: In Theory and Practice:Benward, Bruce and Saker, Marilyn (1997/2003). Music: In Theory and Practice, Vol. I, 7th ed.; p. xiii. McGraw-Hill. .
Where is the value of the waveform . This means that the waveform's values over any interval of length is all that is required to describe the waveform completely (for example, by the associated Fourier series). Since any multiple of period also satisfies this definition, the fundamental period is defined as the smallest period over which the function may be described completely. The fundamental frequency is defined as its reciprocal:
When the units of time are seconds, the frequency is in , also known as Hertz.
Therefore, using the relation
where is the speed of the wave, the fundamental frequency can be found in terms of the speed of the wave and the length of the pipe:
If the ends of the same pipe are now both closed or both opened, the wavelength of the fundamental harmonic becomes . By the same method as above, the fundamental frequency is found to be
The fundamental is the frequency at which the entire wave vibrates. Overtones are other sinusoidal components present at frequencies above the fundamental. All of the frequency components that make up the total waveform, including the fundamental and the overtones, are called partials. Together they form the harmonic series. Overtones which are perfect integer multiples of the fundamental are called harmonics. When an overtone is near to being harmonic, but not exact, it is sometimes called a harmonic partial, although they are often referred to simply as harmonics. Sometimes overtones are created that are not anywhere near a harmonic, and are just called partials or inharmonic overtones.
The fundamental frequency is considered the first harmonic and the first partial. The numbering of the partials and harmonics is then usually the same; the second partial is the second harmonic, etc. But if there are inharmonic partials, the numbering no longer coincides. Overtones are numbered as they appear the fundamental. So strictly speaking, the first overtone is the second partial (and usually the second harmonic). As this can result in confusion, only harmonics are usually referred to by their numbers, and overtones and partials are described by their relationships to those harmonics.
\, }}
where:
To determine the natural frequency in Hz, the omega value is divided by 2. Or:
\,}}
where:
While doing a modal analysis, the frequency of the 1st mode is the fundamental frequency.
This is also expressed as:
\,}}
where:
|
|