In signal processing, a filter bank (or filterbank) is an array of that separates the input signal into multiple components, each one carrying a Sub-band coding of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called analysis (meaning analysis of the signal in terms of its components in each sub-band); the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called synthesis, meaning reconstitution of a complete signal resulting from the filtering process.
In digital signal processing, the term filter bank is also commonly applied to a bank of receivers. The difference is that receivers also down-convert the subbands to a low center frequency that can be re-sampled at a reduced rate. The same result can sometimes be achieved by undersampling the bandpass subbands.
Another application of filter banks is lossy compression when some frequencies are more important than others. After decomposition, the important frequencies can be coded with a fine resolution. Small differences at these frequencies are significant and a coding theory scheme that preserves these differences must be used. On the other hand, less important frequencies do not have to be exact. A coarser coding scheme can be used, even though some of the finer (but less important) details will be lost in the coding.
The vocoder uses a filter bank to determine the amplitude information of the subbands of a modulator signal (such as a voice) and uses them to control the amplitude of the subbands of a carrier signal (such as the output of a guitar or synthesizer), thus imposing the dynamic characteristics of the modulator on the carrier.
[[File:WOLA channelizer example.png|thumb|right|Depiction of the implementation and operation of a weighted overlap add (WOLA) filter bank. Wrap-around of a circular input buffer is used to offset phase discontinuities, caused by lack of a true time reference for the Fourier transform (DFT).
Some filter banks work almost entirely in the time domain, using a series of filters such as quadrature mirror filters or the Goertzel algorithm to divide the signal into smaller bands. Other filter banks use a fast Fourier transform (FFT).
A special case occurs when, by design, the length of the blocks is an integer multiple of the interval between FFTs. Then the FFT filter bank can be described in terms of one or more polyphase filter structures where the phases are recombined by an FFT instead of a simple summation. The number of blocks per segment is the impulse response length (or depth) of each filter. The computational efficiencies of the FFT and polyphase structures, on a general purpose processor, are identical.
Synthesis (i.e. recombining the outputs of multiple receivers) is basically a matter of upsampling each one at a rate commensurate with the total bandwidth to be created, translating each channel to its new center frequency, and summing the streams of samples. In that context, the interpolation filter associated with upsampling is called synthesis filter. The net frequency response of each channel is the product of the synthesis filter with the frequency response of the filter bank ( analysis filter). Ideally, the frequency responses of adjacent channels sum to a constant value at every frequency between the channel centers. That condition is known as perfect reconstruction.
A filter bank divides the input signal into a set of signals . In this way each of the generated signals corresponds to a different region in the spectrum of . In this process it can be possible for the regions overlap (or not, based on application).
The generated signals can be generated via a collection of set of bandpass filters with bandwidths and center frequencies (respectively). A multirate filter bank uses a single input signal and then produces multiple outputs of the signal by filtering and subsampling. In order to split the input signal into two or more signals, an analysis-synthesis system can be used.
The signal would split with the help of four filters for k =0,1,2,3 into 4 bands of the same bandwidths (In the analysis bank) and then each sub-signal is decimated by a factor of 4. In each band by dividing the signal in each band, we would have different signal characteristics.
In synthesis section the filter will reconstruct the original signal: First, upsampling the 4 sub-signals at the output of the processing unit by a factor of 4 and then filter by 4 synthesis filters for k = 0,1,2,3. Finally, the outputs of these four filters are added.
A complete filter bank consists of the analysis and synthesis side. The analysis filter bank divides an input signal to different subbands with different frequency spectra. The synthesis part reassembles the different subband signals and generates a reconstructed signal. Two of the basic building blocks are the decimator and expander. For example, the input divides into four directional sub bands that each of them covers one of the wedge-shaped frequency regions. In 1D systems, M-fold decimators keep only those samples that are multiples of M and discard the rest. while in multi-dimensional systems the decimators are D × D nonsingular integer matrix. it considers only those samples that are on the lattice generated by the decimator. Commonly used decimator is the quincunx decimator whose lattice is generated from the Quincunx matrix which is defined by
The quincunx lattice generated by quincunx matrix is as shown; the synthesis part is dual to the analysis part. Filter banks can be analyzed from a frequency-domain perspective in terms of subband decomposition and reconstruction. However, equally important is Hilbert-space interpretation of filter banks, which plays a key role in geometrical signal representations. For generic K-channel filter bank, with analysis filters , synthesis filters , and sampling matrices . In the analysis side, we can define vectors in '''' as
each index by two parameters: and .
Similarly, for the synthesis filters we can define .
Considering the definition of analysis/synthesis sides we can verify that and for reconstruction part:
In other words, the analysis filter bank calculate the inner product of the input signal and the vector from analysis set. Moreover, the reconstructed signal in the combination of the vectors from the synthesis set, and the combination coefficients of the computed inner products, meaning that
If there is no loss in the decomposition and the subsequent reconstruction, the filter bank is called perfect reconstruction. (in that case we would have . Figure shows a general multidimensional filter bank with N channels and a common sampling matrix M. The analysis part transforms the input signal into N filtered and downsampled outputs . The synthesis part recovers the original signal from by upsampling and filtering. This kind of setup is used in many applications such as subband coding, multichannel acquisition, and discrete wavelet transforms.
With the fast development of communication technology, signal processing system needs more room to store data during the processing, transmission and reception. In order to reduce the data to be processed, save storage and lower the complexity, multirate sampling techniques were introduced to achieve these goals. Filter banks can be used in various areas, such as image coding, voice coding, radar and so on.
Many 1D filter issues were well studied and researchers proposed many 1D filter bank design approaches. But there are still many multidimensional filter bank design problems that need to be solved.
The simplest approach to design a multi-dimensional filter bank is to cascade 1D filter banks in the form of a tree structure where the decimation matrix is diagonal and data is processed in each dimension separately. Such systems are referred to as separable systems. However, the region of support for the filter banks might not be separable. In that case designing of filter bank gets complex. In most cases we deal with non-separable systems.
A filter bank consists of an analysis stage and a synthesis stage. Each stage consists of a set of filters in parallel. The filter bank design is the design of the filters in the analysis and synthesis stages. The analysis filters divide the signal into overlapping or non-overlapping subbands depending on the application requirements. The synthesis filters should be designed to reconstruct the input signal back from the subbands when the outputs of these filters are combined. Processing is typically performed after the analysis stage. These filter banks can be designed as Infinite impulse response (IIR) or Finite impulse response (FIR). In order to reduce the data rate, downsampling and upsampling are performed in the analysis and synthesis stages, respectively.
Let H( z) be the transfer function of a filter. The size of the filter is defined as the order of corresponding polynomial in every dimension. The symmetry or anti-symmetry of a polynomial determines the linear phase property of the corresponding filter and is related to its size. Like the 1D case, the aliasing term A(z) and transfer function T(z) for a 2 channel filter bank are:
A( z)=1/2(H0(- z) F0 ( z)+H1 (- z) F1 ( z)); T( z)=1/2(H0 ( z) F0 ( z)+H1 ( z) F1 ( z)), where H0 and H1 are decomposition filters, and F0 and F1 are reconstruction filters.
The input signal can be perfectly reconstructed if the alias term is cancelled and T( z) equal to a monomial. So the necessary condition is that T'( z) is generally symmetric and of an odd-by-odd size.
Linear phase PR filters are very useful for image processing. This two-channel filter bank is relatively easy to implement. But two channels sometimes are not enough. Two-channel filter banks can be cascaded to generate multi-channel filter banks.
For IIR oversampled filter bank, perfect reconstruction have been studied in WolovichWolovich, William A. Linear multivariable systems. New York: Springer-Verlag, 1974. and Kailath.Kailath, Thomas. Linear systems. Vol. 1. Englewood Cliffs, NJ: Prentice-Hall, 1980. in the context of control theory. While for FIR oversampled filter bank we have to use different strategy for 1-D and M-D. FIR filter are more popular since it is easier to implement. For 1-D oversampled FIR filter banks, the Euclidean algorithm plays a key role in the matrix inverse problem. However, the Euclidean algorithm fails for multidimensional (MD) filters. For MD filter, we can convert the FIR representation into a polynomial representation. And then use Algebraic geometry and Gröbner bases to get the framework and the reconstruction condition of the multidimensional oversampled filter banks.
In Charo, a multivariate polynomial matrix-factorization algorithm is introduced and discussed. The most common problem is the multidimensional filter banks for perfect reconstruction. This paper talks about the method to achieve this goal that satisfies the constrained condition of linear phase.
According to the description of the paper, some new results in factorization are discussed and being applied to issues of multidimensional linear phase perfect reconstruction finite-impulse response filter banks. The basic concept of Gröbner bases is given in Adams.Adams, William W., and Philippe Loustaunau. "An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics" American Mathematical Society, Providence, RI 24(47), 1994.
This approach based on multivariate matrix factorization can be used in different areas. The algorithmic theory of polynomial ideals and modules can be modified to address problems in processing, compression, transmission, and decoding of multidimensional signals.
The general multidimensional filter bank (Figure 7) can be represented by a pair of analysis and synthesis polyphase matrices
Laurent polynomial matrix equation need to be solve to design perfect reconstruction filter banks:
In the multidimensional case with multivariate polynomials we need to use the theory and algorithms of Gröbner bases.
Gröbner bases can be used to characterizing perfect reconstruction multidimensional filter banks, but it first need to extend from polynomial matrices to Laurent polynomial matrices.
The Gröbner-basis computation can be considered equivalently as Gaussian elimination for solving the polynomial matrix equation
where
The Module is analogous to the span of a set of vectors in linear algebra. The theory of Gröbner bases implies that the Module has a unique reduced Gröbner basis for a given order of power products in polynomials.
If we define the Gröbner basis as
Using reverse engineering, we can compute the basis vectors
The mapping approaches have certain restrictions on the kind of filters; however, it brings many important advantages, such as efficient implementation via lifting/ladder structures.
Here we provide an example of two-channel filter banks in 2D with sampling matrix
All the frequency regions in Figure can be critically sampled by the rectangular lattice spanned by
So imagine the filter bank achieves perfect reconstruction
with FIR filters. Then from the polyphase domain characterization it follows that the filters H1(z) and G1(z) are completely
specified by H0(z) and G0(z), respectively. Therefore, we need to design H0(x) and G0(z) which have desired frequency responses and satisfy the polyphase-domain conditions.
There are different mapping technique that can be used to get above result.
In Nguyen, the authors talk about the design of multidimensional filter banks by direct optimization in the frequency domain. The method proposed here is mainly focused on the M-channel 2D filter banks design. The method is flexible towards frequency support configurations. 2D filter banks designed by optimization in the frequency domain has been used in Wei and Lu. In Nguyen's paper, the proposed method is not limited to two-channel 2D filter banks design; the approach is generalized to M-channel filter banks with any critical subsampling matrix. According to the implementation in the paper, it can be used to achieve up to 8-channel 2D filter banks design.
(6)Reverse Jacket Matrix
In Lee's 1999 paper, the authors talk about the multidimensional filter bank design using a reverse jacket matrix. Let H be a Hadamard matrix of order n, the transpose of H is closely related to its inverse. The correct formula is:
In this paper, the authors proposed that the FIR filter with 128 taps be used as a basic filter, and decimation factor is computed for RJ matrices. They did simulations based on different parameters and achieve a good quality performances in low decimation factor.
The first advantage of DFB is that not only it is not a redundant transform but also it offers perfect reconstruction. Another advantage of DFB is its directional-selectivity and efficient structure. This advantage makes DFB an appropriate approach for many signal and image processing usage. (e.g., Laplacian pyramid, constructed the contourlets, sparse image representation, medical imaging, etc.).
Directional Filter Banks can be developed to higher dimensions. It can be use in 3-D to achieve the frequency sectioning.
|
|