Falsifiability (or refutability) is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl Popper in his book The Logic of Scientific Discovery (1934). A theory or hypothesis is falsifiable if it can be logically contradicted by an empirical test.
Popper emphasized the asymmetry created by the relation of a universal law with basic observation statements and contrasted falsifiability to the intuitively similar concept of verifiability that was then current in logical positivism. He argued that the only way to verify a claim such as "All swans are white" would be if one could theoretically observe all swans, which is not possible. On the other hand, the falsifiability requirement for an anomalous instance, such as the observation of a single black swan, is theoretically reasonable and sufficient to logically falsify the claim.
Popper proposed falsifiability as the cornerstone solution to both the problem of induction and the problem of demarcation. He insisted that, as a logical criterion, his falsifiability is distinct from the related concept "capacity to be proven wrong" discussed in Lakatos's falsificationism. Even being a logical criterion, its purpose is to make the theory predictive power and Testability, and thus useful in practice.
By contrast, the Duhem–Quine thesis says that definitive experimental falsifications are impossible and that no scientific hypothesis is by itself capable of making predictions, because an Empirical method test of the hypothesis requires one or more background assumptions.
Popper's response is that falsifiability does not have the Duhem problem because it is a logical criterion. Experimental research has the Duhem problem and other problems, such as the problem of induction, but, according to Popper, statistical tests, which are only possible when a theory is falsifiable, can still be useful within a critical discussion.
As a key notion in the separation of science from non-science and pseudoscience, falsifiability has featured prominently in many scientific controversies and applications, even being used as legal precedent. However, falsifiability is not a sufficient condition for demarcating science as theories have to actually be tested in order to eliminate theories that are wrong. In scientific practice, this can cause theories to change from being falsified back to unfalsified, such as when the once-falsified Geocentric model world view was restored as a viable reference frame within special relativity. There is ambiguity surrounding the status of theories that cannot currently be tested.
Popper's idea to solve this problem is that while it is impossible to verify that every swan is white, finding a single black swan shows that not every swan is white. Such falsification uses the valid inference modus tollens: if from a law we logically deduce , but what is observed is , we infer that the law is false. For example, given the statement "all swans are white", we can deduce "the specific swan here is white", but if what is observed is "the specific swan here is not white" (say black), then "all swans are white" is false. More accurately, the statement that can be deduced is broken into an initial condition and a prediction as in in which "the thing here is a swan" and "the thing here is a white swan". If what is observed is C being true while P is false (formally, ), we can infer that the law is false.
For Popper, induction is actually never needed in science. Instead, in Popper's view, laws are conjectured in a non-logical manner on the basis of expectations and predispositions. This has led David Miller, a student and collaborator of Popper, to write "the mission is to classify truths, not to certify them". In contrast, the logical empiricism movement, which included such philosophers as Moritz Schlick, Rudolf Carnap, Otto Neurath, and A. J. Ayer wanted to formalize the idea that, for a law to be scientific, it must be possible to argue on the basis of observations either in favor of its truth or its falsity. There was no consensus among these philosophers about how to achieve that, but the thought expressed by Mach's dictum that "where neither confirmation nor refutation is possible, science is not concerned" was accepted as a basic precept of critical reflection about science.
Popper said that a demarcation criterion was possible, but we have to use the logical possibility of falsifications, which is falsifiability. He cited his encounter with psychoanalysis in the 1910s. It did not matter what observation was presented, psychoanalysis could explain it. The reason it could explain everything is that it did not exclude anything also. For Popper, this was a failure, because it meant that it could not make any prediction. From a logical standpoint, if one finds an observation that does not contradict a law, it does not mean that the law is true. A verification has no value in itself. But, if the law makes risky predictions and these are corroborated, Popper says, there is a reason to prefer this law over another law that makes less risky predictions or no predictions at all. In the definition of falsifiability, contradictions with observations are not used to support eventual falsifications, but for logical "falsifications" that show that the law makes risky predictions, which is completely different.
On the basic philosophical side of this issue, Popper said that some philosophers of the Vienna Circle had mixed two different problems, that of meaning and that of demarcation, and had proposed in verificationism a single solution to both: a statement that could not be verified was considered meaningless. In opposition to this view, Popper said that there are meaningful theories that are not scientific, and that, accordingly, a criterion of meaningfulness does not coincide with a criterion of demarcation.
When Johnson-Laird says that no justification is needed, he does not refer to a general inductive method of justification that, to avoid a circular reasoning, would not itself require any justification. On the contrary, in agreement with Hume, he means that there is no general method of justification for induction and that's ok, because the induction steps do not require justification. Instead, these steps use patterns of induction, which are not expected to have a general justification: they may or may not be applicable depending on the background knowledge. Johnson-Laird wrote: "Philosophers have worried about which properties of objects warrant inductive inferences. The answer rests on knowledge: we don't infer that all the passengers on a plane are male because the first ten off the plane are men. We know that this observation doesn't rule out the possibility of a woman passenger." The reasoning pattern that was not applied here is enumerative induction.
Popper was interested in the overall learning process in science, to quasi-induction, which he also called the "path of science". However, Popper did not show much interest in these reasoning patterns, which he globally referred to as psychologism. He did not deny the possibility of some kind of psychological explanation for the learning process, especially when psychology is seen as an extension of biology, but he felt that these biological explanations were not within the scope of epistemology. Popper proposed an evolutionary mechanism to explain the success of science, which is much in line with Johnson-Laird's view that "induction is just something that animals, including human beings, do to make life possible", but Popper did not consider it a part of his epistemology. He wrote that his interest was mainly in the logic of science and that epistemology should be concerned with logical aspects only. Instead of asking why science succeeds he considered the pragmatic problem of induction. This problem is not how to justify a theory or what is the global mechanism for the success of science but only what methodology do we use to pick one theory among theories that are already conjectured. His methodological answer to the latter question is that we pick the theory that is the most tested with the available technology: "the one, which in the light of our critical discussion, appears to be the best so far". By his own account, because only a negative approach was supported by logic, Popper adopted a negative methodology.: "The fundamental difference between my approach and the approach for which I long ago introduced the label 'inductivist' is that I lay stress on negative arguments, such as negative instances or counter-examples, refutations, and attempted refutations—in short, criticism". The purpose of his methodology is to prevent "the policy of immunizing our theories against refutation". It also supports some "dogmatic attitude" in defending theories against criticism, because this allows the process to be more complete. This negative view of science was much criticized and not only by Johnson-Laird.
In practice, some steps based on observations can be justified under assumptions, which can be very natural. For example, Bayesian inductive logic is justified by theorems that make explicit assumptions. These theorems are obtained with deductive logic, not inductive logic. They are sometimes presented as steps of induction, because they refer to laws of probability, even though they do not go beyond deductive logic. This is yet a third notion of induction, which overlaps with deductive logic in the following sense that it is supported by it. These deductive steps are not really inductive, but the overall process that includes the creation of assumptions is inductive in the usual sense. In a fallibilist perspective, a perspective that is widely accepted by philosophers, including Popper, every logical step of learning only creates an assumption or reinstates one that was doubted—that is all that science logically does.
The methodological part consists, in Popper's view, of informal rules, which are used to guess theories, accept observation statements as factual, etc. These include statistical tests: Popper is aware that observation statements are accepted with the help of statistical methods and that these involve methodological decisions. When this distinction is applied to the term "falsifiability", it corresponds to a distinction between two completely different meanings of the term. The same is true for the term "falsifiable". Popper said that he only uses "falsifiability" or "falsifiable" in reference to the logical side and that, when he refers to the methodological side, he speaks instead of "falsification" and its problems.
Popper said that methodological problems require proposing methodological rules. For example, one such rule is that, if one refuses to go along with falsifications, then one has retired oneself from the game of science. The logical side does not have such methodological problems, in particular with regard to the falsifiability of a theory, because basic statements are not required to be possible. Methodological rules are only needed in the context of actual falsifications.
So observations have two purposes in Popper's view. On the methodological side, observations can be used to show that a law is false, which Popper calls falsification. On the logical side, observations, which are purely logical constructions, do not show a law to be false, but contradict a law to show its falsifiability. Unlike falsifications and free from the problems of falsification, these contradictions establish the value of the law, which may eventually be corroborated.
Popper wrote that an entire literature exists because this distinction between the logical aspect and the methodological aspect was not observed. This is still seen in a more recent literature. For example, in their 2019 article Evidence based medicine as science, Vere and Gibson wrote "falsifiability been considered problematic because theories are not simply tested through falsification but in conjunction with auxiliary assumptions and background knowledge."
In more than twelve pages of The Logic of Scientific Discovery, Popper discusses informally which statements among those that are considered in the logical structure are basic statements. A logical structure uses universal classes to define laws. For example, in the law "all swans are white" the concept of swans is a universal class. It corresponds to a set of properties that every swan must have. It is not restricted to the swans that exist, existed or will exist. Informally, a basic statement is simply a statement that concerns only a finite number of specific instances in universal classes. In particular, an existential statement such as "there exists a black swan" is not a basic statement, because it is not specific about the instance. On the other hand, "this swan here is black" is a basic statement. Popper says that it is a singular existential statement or simply a singular statement. So, basic statements are singular (existential) statements.
As in the case of actual falsifiers, decisions must be taken by scientists to accept a logical structure and its associated empirical basis, but these are usually part of a background knowledge that scientists have in common and, often, no discussion is even necessary. The first decision described by Lakatos is implicit in this agreement, but the other decisions are not needed. This agreement, if one can speak of agreement when there is not even a discussion, exists only in principle. This is where the distinction between the logical and methodological sides of science becomes important. When an actual falsifier is proposed, the technology used is considered in detail and, as described in section , an actual agreement is needed. This may require using a deeper empirical basis, hidden within the current empirical basis, to make sure that the properties or values used in the falsifier were obtained correctly ( gives some examples).
Popper says that despite the fact that the empirical basis can be shaky, more comparable to a swamp than to solid ground, the definition that is given above is simply the formalization of a natural requirement on scientific theories, without which the whole logical process of science would not be possible.
However, there is no need to require that falsifiers have two parts in the definition itself. This removes the requirement that a falsifiable statement must make prediction. In this way, the definition is more general and allows the basic statements themselves to be falsifiable. Criteria that require that a law must be predictive, just as is required by falsifiability (when applied to laws), Popper wrote, "have been put forward as criteria of the meaningfulness of sentences (rather than as criteria of demarcation applicable to theoretical systems) again and again after the publication of my book, even by critics who pooh-poohed my criterion of falsifiability."
Another example from Popper of a non-basic statement is "This human action is altruistic." It is not a basic statement, because no accepted technology allows us to determine whether or not an action is motivated by self-interest. Because no basic statement falsifies it, the statement that "All human actions are egotistic, motivated by self-interest" is thus not falsifiable.
Maxwell also used the example "All solids have a melting point." This is not falsifiable, because maybe the melting point will be reached at a higher temperature. The law is falsifiable and more useful if we specify an upper bound on melting points or a way to calculate this upper bound.
Another example from Maxwell is "All are accompanied with a neutrino emission from the same nucleus." This is also not falsifiable, because maybe the neutrino can be detected in a different manner. The law is falsifiable and much more useful from a scientific point of view, if the method to detect the neutrino is specified. Maxwell said that most scientific laws are metaphysical statements of this kind, which, Popper said, need to be made more precise before they can be indirectly corroborated. In other words, specific technologies must be provided to make the statements inter-subjectively-verifiable, i.e., so that scientists know what the falsification or its failure actually means.
In his critique of the falsifiability criterion, Maxwell considered the requirement for decisions in the falsification of, both, the emission of neutrinos (see ) and the existence of the melting point. For example, he pointed out that had no neutrino been detected, it could have been because some conservation law is false. Popper did not argue against the problems of falsification per se. He always acknowledged these problems. Popper's response was at the logical level. For example, he pointed out that, if a specific way is given to trap the neutrino, then, at the level of the language, the statement is falsifiable, because "no neutrino was detected after using this specific way" formally contradicts it (and it is inter-subjectively-verifiable—people can repeat the experiment).
Darwinist Ronald Fisher worked out mathematical theorems to help answer questions regarding natural selection. But, for Popper and others, there is no (falsifiable) law of Natural Selection in this, because these tools only apply to some rare traits. Instead, for Popper, the work of Fisher and others on Natural Selection is part of an important and successful metaphysical research program.
David H. Kaye said that references to the Daubert majority opinion confused falsifiability and falsification and that "inquiring into the existence of meaningful attempts at falsification is an appropriate and crucial consideration in admissibility determinations."
Different ways are used by statisticians to draw conclusions about hypotheses on the basis of available evidence. Fisher, Jerzy Neyman and Egon Pearson proposed approaches that require no prior probabilities on the hypotheses that are being studied. In contrast, Bayesian inference emphasizes the importance of prior probabilities. But, as far as falsification as a yes/no procedure in Popper's methodology is concerned, any approach that provides a way to accept or not a potential falsifier can be used, including approaches that use Bayes' theorem and estimations of prior probabilities that are made using critical discussions and reasonable assumptions taken from the background knowledge. There is no general rule that considers as falsified an hypothesis with small Bayesian revised probability, because as pointed out by Deborah Mayo and argued before by Popper, the individual outcomes described in detail will easily have very small probabilities under available evidence without being genuine anomalies. Nevertheless, Mayo adds, "they can indirectly falsify hypotheses by adding a methodological falsification rule". In general, Bayesian statistic can play a role in critical rationalism in the context of inductive logic, which is said to be inductive because implications are generalized to conditional probabilities. According to Popper and other philosophers such as Colin Howson, Hume's argument precludes inductive logic, but only when the logic makes no use "of additional assumptions: in particular, about what is to be assigned positive prior probability". Inductive logic itself is not precluded, especially not when it is a deductively valid application of Bayes' theorem that is used to evaluate the probabilities of the hypotheses using the observed data and what is assumed about the priors. Gelman and Shalizi mentioned that Bayes' statisticians do not have to disagree with the non-inductivists.
Because statisticians often associate statistical inference with induction, Popper's philosophy is often said to have a hidden form of induction. For example, Mayo wrote "The falsifying hypotheses ... necessitate an evidence-transcending (inductive) statistical inference. This is hugely problematic for Popper". Yet, also according to Mayo, Popper as acknowledged the useful role of statistical inference in the falsification problems: she mentioned that Popper wrote her (in the context of falsification based on evidence) "I regret not studying statistics" and that her thought was then "not as much as I do".
A dogmatic falsificationist ignores the role of auxiliary hypotheses. The assumptions or auxiliary hypotheses of a particular test are all the hypotheses that are assumed to be accurate in order for the test to work as planned. The predicted observation that is contradicted depends on the theory and these auxiliary hypotheses. Again, this leads to the critique that it cannot be told if it is the theory or one of the required auxiliary hypotheses that is false. Lakatos gives the example of the path of a planet. If the path contradicts Newton's law, we will not know if it is Newton's law that is false or the assumption that no other body influenced the path.
Lakatos says that Popper's solution to these criticisms requires that one relaxes the assumption that an observation can show a theory to be false:
Methodological falsificationism replaces the contradicting observation in a falsification with a "contradicting observation" accepted by convention among scientists, a convention that implies four kinds of decisions that have these respective goals: the selection of all basic statements (statements that correspond to logically possible observations), selection of the accepted basic statements among the basic statements, making statistical laws falsifiable and applying the refutation to the specific theory (instead of an auxiliary hypothesis). The experimental falsifiers and falsifications thus depend on decisions made by scientists in view of the currently accepted technology and its associated theory.
Popper distinguished between the creative and informal process from which theories and accepted basic statements emerge and the logical and formal process where theories are falsified or corroborated. The main issue is whether the decision to select a theory among competing theories in the light of falsifications and corroborations could be justified using some kind of formal logic. It is a delicate question, because this logic would be inductive: it justifies a universal law in view of instances. Also, falsifications, because they are based on methodological decisions, are useless in a strict justification perspective. The answer of Lakatos and many others to that question is that it should. In contradistinction, for Popper, the creative and informal part is guided by methodological rules, which naturally say to favour theories that are corroborated over those that are falsified, but this methodology can hardly be made rigorous.
Popper's way to analyze progress in science was through the concept of verisimilitude, a way to define how close a theory is to the truth, which he did not consider very significant, except (as an attempt) to describe a concept already clear in practice. Later, it was shown that the specific definition proposed by Popper cannot distinguish between two theories that are false, which is the case for all theories in the history of science. Today, there is still on going research on the general concept of verisimilitude.
As rational as they can be, these explanations that refer to laws, but cannot be turned into methods of justification (and thus do not contradict Hume's argument or its premises), were not sufficient for some philosophers. In particular, Bertrand Russell once expressed the view that if Hume's problem cannot be solved, “there is no intellectual difference between sanity and insanity” and actually proposed a method of justification. He rejected Hume's premise that there is a need to justify any principle that is itself used to justify induction. It might seem that this premise is hard to reject, but to avoid circular reasoning we do reject it in the case of deductive logic. It makes sense to also reject this premise in the case of principles to justify induction. Lakatos's proposal of sophisticated falsificationism was very natural in that context.
Therefore, Lakatos urged Popper to find an inductive principle behind the trial and error learning process and sophisticated falsificationism was his own approach to address this challenge. Kuhn, Feyerabend, Musgrave and others mentioned and Lakatos himself acknowledged that, as a method of justification, this attempt failed, because there was no normative methodology to justify—Lakatos's methodology was anarchy in disguise.
Popper also offered a methodology with rules, but these rules are also not-inductive rules, because they are not by themselves used to accept laws or establish their validity. They do that through the creativity or "good judgment" of the scientists only. For Popper, the required non deductive component of science never had to be an inductive methodology. He always viewed this component as a creative process beyond the explanatory reach of any rational methodology, but yet used to decide which theories should be studied and applied, find good problems and guess useful conjectures. Quoting Einstein to support his view, Popper said that this renders obsolete the need for an inductive methodology or logical path to the laws. For Popper, no inductive methodology was ever proposed to satisfactorily explain science.
In contradistinction, Popper did not propose his methodology as a tool to reconstruct the history of science. Yet, some times, he did refer to history to corroborate his methodology. For example, he remarked that theories that were considered great successes were also the most likely to be falsified. Zahar's view was that, with regard to corroborations found in the history of science, there was only a difference of emphasis between Popper and Lakatos.
As an anecdotal example, in one of his articles Lakatos challenged Popper to show that his theory was falsifiable: he asked "Under what conditions would you give up your demarcation criterion?". Popper replied "I shall give up my theory if Professor Lakatos succeeds in showing that Newton's theory is no more falsifiable by 'observable states of affairs' than is Freud's." According to David Stove, Lakatos succeeded, since Lakatos showed there is no such thing as a "non-Newtonian" behaviour of an observable object. Stove argued that Popper's counterexamples to Lakatos were either instances of begging the question, such as Popper's example of missiles moving in a "non-Newtonian track", or consistent with Newtonian physics, such as objects not falling to the ground without "obvious" countervailing forces against Earth's gravity.
From Hume's problem to non problematic induction
The elusive distinction between the logic of science and its applied methodology
Basic statements and the definition of falsifiability
Basic statements
The definition of falsifiability
Initial condition and prediction in falsifiers of laws
Falsifiability in model theory
Examples of demarcation and applications
Newton's theory
Einstein's equivalence principle
Evolution
Industrial melanism
Precambrian rabbit
Simple examples of unfalsifiable statements
Omphalos hypothesis
Useful metaphysical statements
discussed statements such as "All men are mortal." This is not falsifiable, because it does not matter how old a man is, maybe he will die next year. Maxwell said that this statement is nevertheless useful, because it is often corroborated. He coined the term "corroboration without demarcation". Popper's view is that it is indeed useful, because Popper considers that metaphysical statements can be useful, but also because it is indirectly corroborated by the corroboration of the falsifiable law "All men die before the age of 150." For Popper, if no such falsifiable law exists, then the metaphysical law is less useful, because it is not indirectly corroborated. This kind of non-falsifiable statements in science was noticed by Carnap as early as 1937.
Natural selection
Mathematics
Historicism
Use in courts of law
McLean v. Arkansas case
In his conclusion related to this criterion Judge Overton stated that:
Daubert standard
Connections between statistical theories and falsifiability
Lakatos's falsificationism
Dogmatic falsificationism
Naive falsificationism
From the problem of induction to falsificationism
Falsificationism in Popper's philosophy
Controversies
Methodless creativity versus inductive methodology
Ahistorical versus historiographical
Normal science versus revolutionary science
Unfalsifiability versus falsity of astrology
Epistemological anarchism vs the scientific method
Sokal and Bricmont
See also
Notes
Citations
Further reading
External links
|
|