An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, , some metals, and in some liquids. It transports energy without transporting net electric charge.Monique Combescot and Shiue-Yuan Shiau, "Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics", Oxford University Press. .
An exciton can form when an electron from the valence band of a crystal is promoted in energy to the conduction band e.g., when a material absorbs a photon. Promoting the electron to the conduction band leaves a positively charged hole in the valence band. Here 'hole' represents the unoccupied quantum mechanical electron state with a positive charge, an analogue in crystal of a positron. Because of the attractive coulomb force between the electron and the hole, a bound state is formed, akin to that of the electron and proton in a hydrogen atom or the electron and positron in positronium. Excitons are composite bosons since they are formed from two fermions which are the electron and the hole.
Excitons are often treated in two limiting cases, namely small-radius excitons, named Frenkel exciton, and large-radius excitons, often called Wannier-Mott excitons.
A Frenkel exciton occurs when the distance between electron and hole is restricted to one or only a few nearest neighbour unit cells. Frenkel excitons typically occur in insulators and organic semiconductors with relatively narrow allowed energy bands and accordingly, rather heavy Effective mass.
In the case of Wannier-Mott excitons, the relative motion of electron and hole in the crystal covers many unit cells. Wannier-Mott excitons are considered as hydrogen-like quasiparticles. The wavefunction of the bound state then is said to be hydrogenic, resulting in a series of energy states in analogy to a hydrogen atom. Compared to a hydrogen atom, the exciton binding energy in a crystal is much smaller and the exciton's size (radius) is much larger. This is mainly because of two effects: (a) Coulomb forces are screened in a crystal, which is expressed as a relative permittivity εr significantly larger than 1 and (b) the Effective mass of the electron and hole in a crystal are typically smaller compared to that of free electrons. Wannier-Mott excitons with binding energies ranging from a few to hundreds of meV, depending on the crystal, occur in many semiconductors including Cu2 O, GaAs, other III-V and II-VI semiconductors, transition metal dichalcogenides such as MoS2.
Excitons give rise to spectrally narrow lines in optical absorption, reflection, transmission and luminescence spectra with the energies below the free-particle band gap of an insulator or a semiconductor. Exciton binding energy and radius can be extracted from optical absorption measurements in applied magnetic fields.
The exciton as a quasiparticle is characterized by the momentum (or wavevector K) describing free propagation of the electron-hole pair as a composite particle in the crystalline lattice in agreement with the Bloch theorem. The exciton energy depends on K and is typically parabolic for the wavevectors much smaller than the reciprocal lattice vector of the host lattice. The exciton energy also depends on the respective orientation of the electron and hole spins, whether they are parallel or anti-parallel. The spins are coupled by the exchange interaction, giving rise to exciton energy fine structure.
In metals and highly doped semiconductors a concept of the Gerald Mahan exciton is invoked where the hole in a valence band is correlated with the Fermi sea of conduction electrons. In that case no bound state in a strict sense is formed, but the Coulomb interaction leads to a significant enhancement of absorption in the vicinity of the fundamental absorption edge also known as the Mahan or Fermi-edge singularity.
In single-wall carbon nanotubes, excitons have both Wannier–Mott and Frenkel character. This is due to the nature of the Coulomb interaction between electrons and holes in one-dimension. The dielectric function of the nanotube itself is large enough to allow for the spatial extent of the wave function to extend over a few to several nanometers along the tube axis, while poor screening in the vacuum or dielectric environment outside of the nanotube allows for large (0.4 to ) binding energies.
Often more than one band can be chosen as source for the electron and the hole, leading to different types of excitons in the same material. Even high-lying bands can be effective as femtosecond two-photon experiments have shown. At cryogenic temperatures, many higher excitonic levels can be observed approaching the edge of the band, forming a series of spectral absorption lines that are in principle similar to hydrogen spectral series.
where is the Rydberg unit of energy (cf. Rydberg constant), is the (static) relative permittivity, is the reduced mass of the electron and hole, and is the electron mass. Concerning the radius, we have
where is the Bohr radius.
For example, in Gallium arsenide, we have relative permittivity of 12.8 and effective electron and hole masses as 0.067 m0 and 0.2 m0 respectively; and that gives us meV and nm.
For a simple screened Coulomb potential, the binding energies take the form of the 2D hydrogen atom
In most 2D semiconductors, the Rytova–Keldysh form is a more accurate approximation to the exciton interaction
where is the so-called screening length, is the vacuum permittivity, is the elementary charge, the average dielectric constant of the surrounding media, and the exciton radius. For this potential, no general expression for the exciton energies may be found. One must instead turn to numerical procedures, and it is precisely this potential that gives rise to the nonhydrogenic Rydberg series of the energies in 2D semiconductors.
where is the relative permittivity, is the reduced mass of the electron-hole system, is the electron mass, and is the Bohr radius.
Hubbard excitons were observed for the first time in 2023 through the Terahertz time-domain spectroscopy. Those particles have been obtained by applying a light to a Mott insulator.
When a molecule absorbs a quantum of energy that corresponds to a transition from one molecular orbital to another molecular orbital, the resulting electronic excited state is also properly described as an exciton. An electron is said to be found in the lowest unoccupied orbital and an electron hole in the highest occupied molecular orbital, and since they are found within the same molecular orbital manifold, the electron-hole state is said to be bound. Molecular excitons typically have characteristic lifetimes on the order of nanoseconds, after which the ground electronic state is restored and the molecule undergoes photon or phonon emission. Molecular excitons have several interesting properties, one of which is energy transfer (see Förster resonance energy transfer) whereby if a molecular exciton has proper energetic matching to a second molecule's spectral absorbance, then an exciton may transfer ( hop) from one molecule to another. The process is strongly dependent on intermolecular distance between the species in solution, and so the process has found application in sensing and molecular rulers.
The hallmark of molecular excitons in organic molecular crystals are doublets and/or triplets of exciton absorption bands strongly polarized along crystallographic axes. In these crystals an elementary cell includes several molecules sitting in symmetrically identical positions, which results in the level degeneracy that is lifted by intermolecular interaction. As a result, absorption bands are polarized along the symmetry axes of the crystal. Such multiplets were discovered by Antonina Prikhot'koA. Prikhotjko, Absorption Spectra of Crystals at Low Temperatures, J. Physics USSR 8, p. 257 (1944).A. F. Prikhot'ko, Izv, AN SSSR Ser. Fiz. 7, p. 499 (1948) http://ujp.bitp.kiev.ua/files/journals/53/si/53SI18p.pdf . and their genesis was proposed by Alexander Davydov. It is known as 'Davydov splitting'.A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, New York) 1971.V. L. Broude, E. I. Rashba, and E. F. Sheka, Spectroscopy of molecular excitons (Springer, New York, New York) 1985.
Self-trapping of excitons is similar to forming strong-coupling but with three essential differences. First, self-trapped exciton states are always of a small radius, of the order of lattice constant, due to their electric neutrality. Second, there exists a self-trapping barrier separating free and self-trapped states, hence, free excitons are metastable. Third, this barrier enables coexistence of free and self-trapped states of excitons.E. I. Rashba, "Theory of Strong Interaction of Electron Excitations with Lattice Vibrations in Molecular Crystals", Optika i Spektroskopiya 2, pp. 75, 88 (1957).E. I. Rashba, Self-trapping of excitons, in: Excitons (North-Holland, Amsterdam, 1982), p. 547.S. I. Pekar, E. I. Rashba, V. I. Sheka, Soviet Physics JETP 49, p. 251 (1979), http://www.jetp.ac.ru/cgi-bin/dn/e_049_01_0129.pdf . This means that spectral lines of free excitons and wide bands of self-trapped excitons can be seen simultaneously in absorption and luminescence spectra. While the self-trapped states are of lattice-spacing scale, the barrier has typically much larger scale. Indeed, its spatial scale is about where is effective mass of the exciton, is the exciton-phonon coupling constant, and is the characteristic frequency of optical phonons. Excitons are self-trapped when and are large, and then the spatial size of the barrier is large compared with the lattice spacing. Transforming a free exciton state into a self-trapped one proceeds as a collective tunneling of coupled exciton-lattice system (an instanton). Because is large, tunneling can be described by a continuum theory. The height of the barrier . Because both and appear in the denominator of , the barriers are basically low. Therefore, free excitons can be seen in crystals with strong exciton-phonon coupling only in pure samples and at low temperatures. Coexistence of free and self-trapped excitons was observed in rare-gas solids,I. Ya. Fugol', "Free and self-trapped excitons in cryocrystals: kinetics and relaxation processes." Advances in Physics 37, pp. 1–35 (1988). alkali-halides,Ch. B. Lushchik, in "Excitons," edited by E. I. Rashba, and M. D. Sturge, (North Holland, Amsterdam, 1982), p. 505. and in molecular crystal of pyrene.M. Furukawa, Ken-ichi Mizuno, A. Matsui, N. Tamai and I. Yamazaiu, Branching of Exciton Relaxation to the Free and Self-Trapped Exciton States, Chemical Physics 138, p. 423 (1989).
The existence of exciton states may be inferred from the absorption of light associated with their excitation. Typically, excitons are observed just below the band gap.
When excitons interact with photons a so-called polariton (or more specifically exciton-polariton) is formed. These excitons are sometimes referred to as dressed excitons.
Provided the interaction is attractive, an exciton can bind with other excitons to form a biexciton, analogous to a dihydrogen molecule. If a large density of excitons is created in a material, they can interact with one another to form an electron-hole liquid, a state observed in k-space indirect semiconductors.
Additionally, excitons are integer-spin particles obeying Bosons statistics in the low-density limit. In some systems, where the interactions are repulsive, a Bose–Einstein condensed state, called excitonium, is predicted to be the ground state. Some evidence of excitonium has existed since the 1970s but has often been difficult to discern from a Peierls phase. Exciton condensates have allegedly been seen in a double quantum well systems. In 2017 Kogar et al. found "compelling evidence" for observed excitons condensing in the three-dimensional semimetal 1 T-TiSe2..
|
|