The dose–response relationship, or exposure–response relationship describes the magnitude of the response of a biochemical or cell-based assay or an organism, as a function of exposure (or doses) to a stimulus or stressor (usually a chemical) after a certain exposure time. Dose–response relationships can be described by dose–response curves, or concentration-response curves. This is explained further in the following sections. A stimulus response function or stimulus response curve is defined more broadly as the response from any type of stimulus, not limited to chemicals.
Agonist (e.g. nicotine, isoprenaline) | Biochemical receptors, , Transporters | |
Antagonist (e.g. ketamine, propranolol) | ||
Allosteric modulator (e.g. Benzodiazepine) | ||
Temperature | Temperature receptors | |
Sound levels | Hair cells | |
Illumination/Light intensity | Photoreceptors | |
Mechanical pressure | Mechanoreceptors | |
Pathogen dose (e.g. LPS) | n/a | |
Radiation intensity | n/a |
+ !System Level !Example Response | |
Population (Epidemiology) | Death, loss of consciousness |
Organism/Whole animal (Physiology) | Severity of lesion, blood pressure, heart rate, extent of movement, attentiveness, EEG data |
Organ/Tissue | ATP production, proliferation, muscle contraction, bile production, cell death |
Cell (Cell biology, Biochemistry) | ATP production, calcium signals, morphology, mitosis |
Statistical analysis of dose–response curves may be performed by regression methods such as the probit model or logit model, or other methods such as the Spearman–Kärber method. Empirical models based on nonlinear regression are usually preferred over the use of some transformation of the data that linearizes the dose-response relationship.
Typical experimental design for measuring dose-response relationships are organ bath preparations, ligand binding assays, , and clinical trial.
Specific to response to doses of radiation the Health Physics Society (in the United States) has published a documentary series on the origins of the linear no-threshold (LNT) model though the society has not adopted a policy on LNT."
The Hill equation is the following formula, where is the magnitude of the response,
The parameters of the dose response curve reflect measures of potency (such as EC50, IC50, ED50, etc.) and measures of efficacy (such as tissue, cell or population response).
A commonly used dose–response curve is the EC50 curve, the half maximal effective concentration, where the EC50 point is defined as the inflection point of the curve.
Dose response curves are typically fitted to the Hill equation.
The first point along the graph where a response above zero (or above the control response) is reached is usually referred to as a threshold dose. For most beneficial or recreational drugs, the desired effects are found at doses slightly greater than the threshold dose. At higher doses, undesired side effects appear and grow stronger as the dose increases. The more potent a particular substance is, the steeper this curve will be. In quantitative situations, the Y-axis often is designated by percentages, which refer to the percentage of exposed individuals registering a standard response (which may be death, as in ). Such a curve is referred to as a quantal dose–response curve, distinguishing it from a graded dose–response curve, where response is continuous (either measured, or by judgment).
The Hill equation can be used to describe dose–response relationships, for example ion channel-open-probability vs. ligand concentration.
Dose is usually in milligrams, Microgramme, or grams per kilogram of body-weight for oral exposures or milligrams per cubic meter of ambient air for inhalation exposures. Other dose units include moles per body-weight, moles per animal, and for dermal exposure, moles per square centimeter.
Compare with a rearrangement of Hill:
The Emax model is the single most common model for describing dose-response relationship in drug development.
Dose–response relationships generally depend on the exposure time and exposure route (e.g., inhalation, dietary intake); quantifying the response after a different exposure time or for a different route leads to a different relationship and possibly different conclusions on the effects of the stressor under consideration. This limitation is caused by the complexity of biological systems and the often unknown biological processes operating between the external exposure and the adverse cellular or tissue response.
Shape of dose-response curve
Limitations
Schild analysis
See also
External links
|
|