In theoretical physics, quantum chromodynamics ( QCD) is the study of the strong interaction between mediated by . Quarks are fundamental particles that make up composite such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.
QCD exhibits three salient properties:
The three kinds of charge in QCD (as opposed to one in quantum electrodynamics or QED) are usually referred to as "color charge" by loose analogy to the three kinds of color (red, green and blue) color vision. Other than this nomenclature, the quantum parameter "color" is completely unrelated to the everyday, familiar phenomenon of color.
The force between quarks is known as the colour force (or color force retrieved 6 May 2017) or strong interaction, and is responsible for the nuclear force.
Since the theory of electric charge is dubbed "electrodynamics", the Ancient Greek word χρῶμα (chrōma, "color") is applied to the theory of color charge, "chromodynamics".
Perhaps the first remark that quarks should possess an additional quantum number was made as a short footnote in the preprint of Boris StruminskyB. V. Struminsky, Magnetic moments of baryons in the quark model. JINR-Preprint P-1939, Dubna, Russia. Submitted on January 7, 1965. in connection with the Ω− Omega baryon being composed of three with parallel spins (this situation was peculiar, because since quarks are , such a combination is forbidden by the Pauli exclusion principle):
Boris Struminsky was a PhD student of Nikolay Bogolyubov. The problem considered in this preprint was suggested by Nikolay Bogolyubov, who advised Boris Struminsky in this research. In the beginning of 1965, Nikolay Bogolyubov, Boris Struminsky and Albert Tavkhelidze wrote a preprint with a more detailed discussion of the additional quark quantum degree of freedom.N. Bogolubov, B. Struminsky, A. Tavkhelidze. On composite models in the theory of elementary particles. JINR Preprint D-1968, Dubna 1965. This work was also presented by Albert Tavkhelidze without obtaining consent of his collaborators for doing so at an international conference in Trieste (Italy), in May 1965.A. Tavkhelidze. Proc. Seminar on High Energy Physics and Elementary Particles, Trieste, 1965, Vienna IAEA, 1965, p. 763.V. A. Matveev and A. N. Tavkhelidze (INR, RAS, Moscow) The quantum number color, colored quarks and QCD (Dedicated to the 40th Anniversary of the Discovery of the Quantum Number Color). Report presented at the 99th Session of the JINR Scientific Council, Dubna, 19–20 January 2006.
A similar mysterious situation was with the Delta baryon; in the quark model, it is composed of three with parallel spins. In 1964–65, Oscar W. Greenberg; and Moo-Young Han and Yoichiro Nambu independently resolved the problem by proposing that quarks possess an additional SU(3) gauge theory degree of freedom, later called color charge. Han and Nambu noted that quarks might interact via an octet of vector : the .
Since free quark searches consistently failed to turn up any evidence for the new particles, and because an elementary particle back then was defined as a particle that could be separated and isolated, Gell-Mann often said that quarks were merely convenient mathematical constructs, not real particles. The meaning of this statement was usually clear in context: He meant quarks are confined, but he also was implying that the strong interactions could probably not be fully described by quantum field theory.
Richard Feynman argued that high energy experiments showed quarks are real particles: he called them partons (since they were parts of hadrons). By particles, Feynman meant objects that travel along paths, elementary particles in a field theory.
The difference between Feynman's and Gell-Mann's approaches reflected a deep split in the theoretical physics community. Feynman thought the quarks have a distribution of position or momentum, like any other particle, and he (correctly) believed that the diffusion of parton momentum explained pomeron. Although Gell-Mann believed that certain quark charges could be localized, he was open to the possibility that the quarks themselves could not be localized because space and time break down. This was the more radical approach of S-matrix theory.
James Bjorken proposed that pointlike partons would imply certain relations in deep inelastic scattering of and protons, which were verified in experiments at SLAC in 1969. This led physicists to abandon the S-matrix approach for the strong interactions.
In 1973 the concept of Color charge as the source of a "strong field" was developed into the theory of QCD by physicists Harald Fritzsch and Heinrich Leutwyler, together with physicist Murray Gell-Mann. In particular, they employed the general field theory developed in 1954 by Chen Ning Yang and Robert Mills (see Yang–Mills theory), in which the carrier particles of a force can themselves radiate further carrier particles. (This is different from QED, where the photons that carry the electromagnetic force do not radiate further photons.)
The discovery of asymptotic freedom in the strong interactions by David Gross, David Politzer and Frank Wilczek allowed physicists to make precise predictions of the results of many high energy experiments using the quantum field theory technique of perturbation theory. Evidence of gluons was discovered in at PETRA in 1979. These experiments became more and more precise, culminating in the verification of perturbative QCD at the level of a few percent at LEP, at CERN.
The other side of asymptotic freedom is confinement. Since the force between color charges does not decrease with distance, it is believed that quarks and gluons can never be liberated from hadrons. This aspect of the theory is verified within lattice QCD computations, but is not mathematically proven. One of the Millennium Prize Problems announced by the Clay Mathematics Institute requires a claimant to produce such a proof. Other aspects of non-perturbative QCD are the exploration of phases of QCD matter, including the quark–gluon plasma.
QCD is a non-abelian gauge theory (or Yang–Mills theory) of the SU(3) gauge group obtained by taking the color charge to define a local symmetry.
Since the strong interaction does not discriminate between different flavors of quark, QCD has approximate flavor symmetry, which is broken by the differing masses of the quarks.
There are additional global symmetries whose definitions require the notion of chirality, discrimination between left and right-handed. If the spin of a particle has a positive projection on its direction of motion then it is called right-handed; otherwise, it is left-handed. Chirality and handedness are not the same, but become approximately equivalent at high energies.
There are two different types of SU(3) symmetry: there is the symmetry that acts on the different colors of quarks, and this is an exact gauge symmetry mediated by the gluons, and there is also a flavor symmetry that rotates different flavors of quarks to each other, or flavor SU(3). Flavor SU(3) is an approximate symmetry of the vacuum of QCD, and is not a fundamental symmetry at all. It is an accidental consequence of the small mass of the three lightest quarks.
In the QCD vacuum there are vacuum condensates of all the quarks whose mass is less than the QCD scale. This includes the up and down quarks, and to a lesser extent the strange quark, but not any of the others. The vacuum is symmetric under SU(2) isospin rotations of up and down, and to a lesser extent under rotations of up, down, and strange, or full flavor group SU(3), and the observed particles make isospin and SU(3) multiplets.
The approximate flavor symmetries do have associated gauge bosons, observed particles like the rho and the omega, but these particles are nothing like the gluons and they are not massless. They are emergent gauge bosons in an approximate string description of QCD.
where is the quark field, a dynamical function of spacetime, in the fundamental representation of the SU(3) gauge group, indexed by and running from to ; is the Dirac adjoint of ; is the gauge covariant derivative; the γμ are Gamma matrices connecting the spinor representation to the vector representation of the Lorentz group.
Herein, the gauge covariant derivative couples the quark field with a coupling strength to the gluon fields via the infinitesimal SU(3) generators in the fundamental representation. An explicit representation of these generators is given by , wherein the are the Gell-Mann matrices.
The symbol represents the gauge invariant gluon field strength tensor, analogous to the electromagnetic field strength tensor, Fμν, in quantum electrodynamics. It is given by:
where are the , dynamical functions of spacetime, in the adjoint representation of the SU(3) gauge group, indexed by a, b and c running from to ; and fabc are the structure constants of SU(3) (the generators of the adjoint representation). Note that the rules to move-up or pull-down the a, b, or c indices are trivial, (+, ..., +), so that fabc = fabc = f a bc whereas for the μ or ν indices one has the non-trivial relativistic rules corresponding to the metric signature (+ − − −).
The variables m and g correspond to the quark mass and coupling of the theory, respectively, which are subject to renormalization.
An important theoretical concept is the Wilson loop (named after Kenneth G. Wilson). In lattice QCD, the final term of the above Lagrangian is discretized via Wilson loops, and more generally the behavior of Wilson loops can distinguish confined and deconfined phases.
Gluons are spin-1 that also carry , since they lie in the adjoint representation 8 of SU(3). They have no electric charge, do not participate in the weak interactions, and have no flavor. They lie in the singlet state 1 of all these symmetry groups.
Each type of quark has a corresponding antiquark, of which the charge is exactly opposite. They transform in the conjugate representation to quarks, denoted .
The first evidence for quarks as real constituent elements of hadrons was obtained in deep inelastic scattering experiments at SLAC. The first evidence for gluons came in at PETRA.
Several good quantitative tests of perturbative QCD exist:
Quantitative tests of non-perturbative QCD are fewer, because the predictions are harder to make. The best is probably the running of the QCD coupling as probed through lattice QCD computations of heavy-quarkonium spectra. There is a recent claim about the mass of the heavy meson Bc . Other non-perturbative tests are currently at the level of 5% at best. Continuing work on masses and form factors of hadrons and their weak matrix elements are promising candidates for future quantitative tests. The whole subject of quark matter and the quark–gluon plasma is a non-perturbative test bed for QCD that still remains to be properly exploited.
One qualitative prediction of QCD is that there exist composite particles made solely of called that have not yet been definitively observed experimentally. A definitive observation of a glueball with the properties predicted by QCD would strongly confirm the theory. In principle, if glueballs could be definitively ruled out, this would be a serious experimental blow to QCD. But, as of 2013, scientists are unable to confirm or deny the existence of glueballs definitively, despite the fact that particle accelerators have sufficient energy to generate them.
However, here the coupling degrees of freedom , which in the QCD correspond to the gluons, are "frozen" to fixed values (quenching). In contrast, in the QCD they "fluctuate" (annealing), and through the large number of gauge degrees of freedom the entropy plays an important role (see below).
For positive J0 the thermodynamics of the Mattis spin glass corresponds in fact simply to a "ferromagnet in disguise", just because these systems have no "frustration" at all. This term is a basic measure in spin glass theory. Quantitatively it is identical with the loop product along a closed loop W. However, for a Mattis spin glass – in contrast to "genuine" spin glasses – the quantity PW never becomes negative.
The basic notion "frustration" of the spin-glass is actually similar to the Wilson loop quantity of the QCD. The only difference is again that in the QCD one is dealing with SU(3) matrices, and that one is dealing with a "fluctuating" quantity. Energetically, perfect absence of frustration should be non-favorable and atypical for a spin glass, which means that one should add the loop product to the Hamiltonian, by some kind of term representing a "punishment". In the QCD the Wilson loop is essential for the Lagrangian rightaway.
The relation between the QCD and "disordered magnetic systems" (the spin glasses belong to them) were additionally stressed in a paper by Fradkin, Huberman and Shenker, which also stresses the notion of duality.
A further analogy consists in the already mentioned similarity to polymer physics, where, analogously to Wilson loops, so-called "entangled nets" appear, which are important for the formation of the entropic force (force proportional to the length) of a rubber band. The non-abelian character of the SU(3) corresponds thereby to the non-trivial "chemical links", which glue different loop segments together, and "asymptotic freedom" means in the polymer analogy simply the fact that in the short-wave limit, i.e. for (where Rc is a characteristic correlation length for the glued loops, corresponding to the above-mentioned "bag radius", while λw is the wavelength of an excitation) any non-trivial correlation vanishes totally, as if the system had crystallized.
There is also a correspondence between confinement in QCD – the fact that the color field is only different from zero in the interior of hadrons – and the behaviour of the usual magnetic field in the theory of type-II superconductors: there the magnetism is confined to the interior of the Abrikosov vortex,Mathematically, the flux-line lattices are described by Emil Artin's braid group, which is nonabelian, since one braid can wind around another one. i.e., the London penetration depth λ of that theory is analogous to the confinement radius Rc of quantum chromodynamics. Mathematically, this correspondendence is supported by the second term, on the r.h.s. of the Lagrangian.
|
|