Monochloramine, often called chloramine, is the chemical compound with the formula NH2Cl. Together with dichloramine (NHCl2) and nitrogen trichloride (NCl3), it is one of the three chloramines of ammonia. It is a colorless liquid at its melting point of , but it is usually handled as a dilute aqueous solution, in which form it is sometimes used as a disinfectant. Chloramine is too unstable to have its boiling point measured.
Some of the unregulated byproducts may possibly pose greater health risks than the regulated chemicals.
Due to its acidic nature, adding chloramine to the water supply may increase exposure to lead in drinking water, especially in areas with older housing; this exposure can result in increased lead levels in the bloodstream, which may pose a significant health risk. Fortunately, water treatment plants can add caustic chemicals at the plant which have the dual purpose of reducing the corrosivity of the water, and stabilizing the disinfectant.
Though chloramine's distinctive smell has been described by some as pleasant and even nostalgic, its formation in pool water as a result of bodily fluids being exposed to chlorine can be minimised by encouraging and other hygiene methods prior to entering the pool, as well as refraining from swimming while suffering from digestive illnesses and taking breaks to use the bathroom, instead of simply urinating in the pool.
Another newly-identified byproduct of chloramine is chloronitramide anions, whose toxicity has not yet been determined.
Trenton, Missouri made the same switch, causing about one quarter of tested households to exceed EPA drinking water lead limits in the period from 2017 to 2019. 20 children tested positive for lead poisoning in 2016 alone. In 2023, Virginia Tech Professor Marc Edwards said lead spikes occur in several water utility system switchovers per year, due to lack of sufficient training and lack of removal of lead pipes. Lack of utility awareness that lead pipes are still in use is also part of the problem; the EPA has required all water utilities in the United States to prepare a complete lead pipe inventory by October 16, 2024.
This reaction is also the first step of the Olin Raschig process for hydrazine synthesis. The reaction has to be carried out in a slightly alkaline medium (pH 8.5–11). The acting chlorinating agent in this reaction is hypochlorous acid (HOCl), which has to be generated by protonation of hypochlorite, and then reacts in a nucleophilic substitution of the Hydroxy group against the amino group. The reaction occurs quickest at around pH 8. At higher pH values the concentration of hypochlorous acid is lower, at lower pH values ammonia is protonated to form (), which do not react further.
The chloramine solution can be concentrated by vacuum distillation and by passing the vapor through potassium carbonate which absorbs the water. Chloramine can be extracted with ether.
Gaseous chloramine can be obtained from the reaction of gaseous ammonia with chlorine gas (diluted with nitrogen gas):
Pure chloramine can be prepared by passing fluoroamine through calcium chloride:
The quantitative hydrolysis constant ( K value) is used to express the bactericidal power of chloramines, which depends on their generating hypochlorous acid in water. It is expressed by the equation below, and is generally in the range 10−4 to 10−10 ( for monochloramine):
In aqueous solution, chloramine slowly decomposes to dinitrogen and ammonium chloride in a neutral or mildly alkaline (pH ≤ 11) medium:
However, only a few percent of a 0.1 molarity chloramine solution in water decomposes according to the formula in several weeks. At pH values above 11, the following reaction with slowly occurs:
In an acidic medium at pH values of around 4, chloramine disproportionates to form dichloramine, which in turn disproportionates again at pH values below 3 to form nitrogen trichloride:
At low pH values, nitrogen trichloride dominates and at pH 3–5 dichloramine dominates. These equilibria are disturbed by the irreversible decomposition of both compounds:
Reactions of chloramine include radical, nucleophilic, and electrophilic substitution of chlorine, electrophilic substitution of hydrogen, and oxidative additions.
Chloramine can, like hypochlorous acid, donate positively charged chlorine in reactions with (Nu−):
Examples of chlorination reactions include transformations to dichloramine and nitrogen trichloride in acidic medium, as described in the decomposition section.
Chloramine may also aminate nucleophiles (electrophilic amination):
The amination of ammonia with chloramine to form hydrazine is an example of this mechanism seen in the Olin Raschig process:
Chloramine electrophilically aminates itself in neutral and alkaline media to start its decomposition:
The chlorohydrazine (N2H3Cl) formed during self-decomposition is unstable and decomposes itself, which leads to the net decomposition reaction:
Monochloramine oxidizes and disulfides in the same manner as hypochlorous acid, but only possesses 0.4% of the biocidal effect of HClO.
|
|