A cephalopod is any member of the Taxonomic rank Cephalopoda (Greek language plural κεφαλόποδες, ; "head-feet")
Cephalopods became dominant during the Ordovician period, represented by primitive . The class now contains two, only distantly related, Extant taxon subclasses: Coleoidea, which includes , squid, and cuttlefish; and , represented by Nautilus and Allonautilus. In the Coleoidea, the molluscan shell has been internalized or is absent, whereas in the Nautiloidea, the external shell remains. About 800 living species of cephalopods have been identified. Two important extinct taxon are the Ammonoidea (ammonites) and Belemnoidea (belemnites). Extant cephalopods range in size from the 10 mm (0.3 in) Idiosepius thailandicusOkutani, T. 1995. Cuttlefish and squids of the world in color. Publication for the 30th anniversary of the foundation of the National Cooperative Association of Squid Processors. to the 700 kilograms (1,500 lb) heavy colossal squid, the largest extant invertebrate.Te (2019). The beak of the colossal squid. Museum of New Zealand Te Papa Tongarewa.
Cephalopods are found in all the oceans of Earth. None of them can tolerate fresh water, but the brief squid, Lolliguncula brevis, found in Chesapeake Bay, is a notable partial exception in that it tolerates brackish water. Cephalopods are thought to be unable to live in fresh water due to multiple biochemical constraints, and in their >400 million year existence have never ventured into fully freshwater habitats.
Cephalopods occupy most of the depth of the ocean, from the to the sea surface, and have also been found in the hadal zone. Their diversity is greatest near the equator (~40 species retrieved in nets at 11°N by a diversity study) and decreases towards the poles (~5 species captured at 60°N).
The brain is protected in a cartilage cranium. The giant nerve fibers of the cephalopod mantle have been widely used for many years as experimental material in neurophysiology; their large diameter (due to lack of myelination) makes them relatively easy to study compared with other animals.
Many cephalopods are social creatures; when isolated from their own kind, some species have been observed shoaling with fish.
Some cephalopods are able to fly through the air for distances of up to . While cephalopods are not particularly aerodynamic, they achieve these impressive ranges by jet-propulsion; water continues to be expelled from the funnel while the organism is in the air. The animals spread their fins and tentacles to form wings and actively control lift force with body posture. One species, Todarodes pacificus, has been observed spreading tentacles in a flat fan shape with a mucus film between the individual tentacles, while another, Sepioteuthis sepioidea, has been observed putting the tentacles in a circular arrangement.
All octopuses and most cephalopods
In 2015, a novel mechanism for spectral discrimination in cephalopods was described. This relies on the exploitation of chromatic aberration (wavelength-dependence of focal length). Numerical modeling shows that chromatic aberration can yield useful chromatic information through the dependence of image acuity on accommodation. The unusual off-axis slit and annular pupil shapes in cephalopods enhance this ability by acting as prisms which are scattering white light in all directions.
Cephalopods can use chromatophores like a muscle, which is why they can change their skin hue as rapidly as they do.
Coloration is typically stronger in near-shore species than those living in the open ocean, whose functions tend to be restricted to disruptive camouflage. These chromatophores are found throughout the body of the octopus, however, they are controlled by the same part of the brain that controls elongation during jet propulsion to reduce drag. As such, jetting octopuses can turn pale because the brain is unable to achieve both controlling elongation and controlling the chromatophores. Most octopuses mimic select structures in their field of view rather than becoming a composite color of their full background.
Evidence of original coloration has been detected in cephalopod fossils dating as far back as the Silurian; these orthoconic individuals bore concentric stripes, which are thought to have served as camouflage. Devonian cephalopods bear more complex color patterns, of unknown function.
Cephalopods also use their fine control of body coloration and patterning to perform complex signaling displays for both conspecific and intraspecific communication. Coloration is used in concert with locomotion and texture to send signals to other organisms. Intraspecifically this can serve as a warning display to potential predators. For example, when the octopus Callistoctopus macropus is threatened, it will turn a bright red brown color speckled with white dots as a high contrast display to startle predators. Conspecifically, color change is used for both mating displays and social communication. Cuttlefish have intricate mating displays from males to females. There is also male to male signaling that occurs during competition over mates, all of which are the product of chromatophore coloration displays.
For color change to have evolved as the result of social selection the environment of cephalopods' ancestors would have to fit a number of criteria. One, there would need to be some kind of mating ritual that involved signaling. Two, they would have to experience demonstrably high levels of sexual selection. And three, the ancestor would need to communicate using sexual signals that are visible to a conspecific receiver. For color change to have evolved as the result of natural selection different parameters would have to be met. For one, one would need some phenotypic diversity in body patterning among the population. The species would also need to cohabitate with predators which rely on vision for prey identification. These predators should have a high range of visual sensitivity, detecting not just motion or contrast but also colors. The habitats they occupy would also need to display a diversity of backgrounds. Experiments done in dwarf chameleons testing these hypotheses showed that chameleon taxa with greater capacity for color change had more visually conspicuous social signals but did not come from more visually diverse habitats, suggesting that color change ability likely evolved to facilitate social signaling, while camouflage is a useful byproduct. Because camouflage is used for multiple adaptive purposes in cephalopods, color change could have evolved for one use and the other developed later, or it evolved to regulate trade offs within both.
The ink sac of cephalopods has led to a common name of "inkfish", formerly the pen-and-ink fish.
Like most molluscs, cephalopods use hemocyanin, a copper-containing protein, rather than hemoglobin, to transport oxygen. As a result, their blood is colorless when deoxygenated and turns blue when bonded to oxygen. In oxygen-rich environments and in acidic water, hemoglobin is more efficient, but in environments with little oxygen and in low temperatures, hemocyanin has the upper hand. The hemocyanin molecule is much larger than the hemoglobin molecule, allowing it to bond with 96 or molecules, instead of the hemoglobin's just four. But unlike hemoglobin, which are attached in millions on the surface of a single red blood cell, hemocyanin molecules float freely in the bloodstream.
The gills of cephalopods are supported by a skeleton of robust fibrous proteins; the lack of mucopolysaccharides distinguishes this matrix from cartilage.See also http://tolweb.org/articles/?article_id=4200 The gills are also thought to be involved in excretion, with NH4+ being swapped with K+ from the seawater.
Cephalopods employ a similar method of propulsion despite their increasing size (as they grow) changing the dynamics of the water in which they find themselves. Thus their paralarvae do not extensively use their fins (which are less efficient at low ) and primarily use their jets to propel themselves upwards, whereas large adult cephalopods tend to swim less efficiently and with more reliance on their fins.
Early cephalopods are thought to have produced jets by drawing their body into their shells, as Nautilus does today. Nautilus is also capable of creating a jet by undulations of its funnel; this slower flow of water is more suited to the extraction of oxygen from the water. When motionless, Nautilus can only extract 20% of oxygen from the water. The jet velocity in Nautilus is much slower than in , but less musculature and energy is involved in its production. Jet thrust in cephalopods is controlled primarily by the maximum diameter of the funnel orifice (or, perhaps, the average diameter of the funnel) and the diameter of the mantle cavity. Changes in the size of the orifice are used most at intermediate velocities. The absolute velocity achieved is limited by the cephalopod's requirement to inhale water for expulsion; this intake limits the maximum velocity to eight body-lengths per second, a speed which most cephalopods can attain after two funnel-blows. Water refills the cavity by entering not only through the orifices, but also through the funnel. Squid can expel up to 94% of the fluid within their cavity in a single jet thrust. To accommodate the rapid changes in water intake and expulsion, the orifices are highly flexible and can change their size by a factor of 20; the funnel radius, conversely, changes only by a factor of around 1.5.
Some octopus species are also able to walk along the seabed. Squids and cuttlefish can move short distances in any direction by rippling of a flap of muscle around the mantle.
While most cephalopods float (i.e. are neutral buoyancy or nearly so; in fact most cephalopods are about 2–3% denser than seawater), they achieve this in different ways.
Some, such as Nautilus, allow gas to diffuse into the gap between the mantle and the shell; others allow purer water to ooze from their kidneys, forcing out denser salt water from the body cavity; others, like some fish, accumulate oils in the liver; and some octopuses have a gelatinous body with lighter chloride replacing sulfate in the body chemistry.
Squids are the primary sufferers of negative buoyancy in cephalopods. The negative buoyancy means that some squids, especially those whose habitat depths are rather shallow, have to actively regulate their vertical positions. This means that they must expend energy, often through jetting or undulations, in order to maintain the same depth. As such, the cost of transport of many squids are quite high. That being said, squid and other cephalopod that dwell in deep waters tend to be more neutrally buoyant which removes the need to regulate depth and increases their locomotory efficiency.
The Macrotritopus defilippi, or the sand-dwelling octopus, was seen mimicking both the coloration and the swimming movements of the sand-dwelling flounder Bothus lunatus to avoid predators. The octopuses were able to flatten their bodies and put their arms back to appear the same as the flounders as well as move with the same speed and movements.
Females of two species, Ocythoe tuberculata and Haliphron atlanticus, have evolved a true swim bladder.
Both octopuses and squids have mantles (referenced above) which function towards respiration and locomotion in the form of jetting. The composition of these mantles differs between the two families, however. In octopuses, the mantle is made up of three muscle types: longitudinal, radial, and circular. The longitudinal muscles run parallel to the length of the octopus and they are used in order to keep the mantle the same length throughout the jetting process. Given that they are muscles, it can be noted that this means the octopus must actively flex the longitudinal muscles during jetting in order to keep the mantle at a constant length. The radial muscles run perpendicular to the longitudinal muscles and are used to thicken and thin the wall of the mantle. Finally, the circular muscles are used as the main activators in jetting. They are muscle bands that surround the mantle and expand/contract the cavity. All three muscle types work in unison to produce a jet as a propulsion mechanism.
Squids do not have the longitudinal muscles that octopus do. Instead, they have a tunic. This tunic is made of layers of collagen and it surrounds the top and the bottom of the mantle. Because they are made of collagen and not muscle, the tunics are rigid bodies that are much stronger than the muscle counterparts. This provides the squids some advantages for jet propulsion swimming. The stiffness means that there is no necessary muscle flexing to keep the mantle the same size. In addition, tunics take up only 1% of the squid mantle's wall thickness, whereas the longitudinal muscle fibers take up to 20% of the mantle wall thickness in octopuses. Also because of the rigidity of the tunic, the radial muscles in squid can contract more forcefully.
The mantle is not the only place where squids have collagen. Collagen fibers are located throughout the other muscle fibers in the mantle. These collagen fibers act as elastics and are sometimes named "collagen springs". As the name implies, these fibers act as springs. When the radial and circular muscles in the mantle contract, they reach a point where the contraction is no longer efficient to the forward motion of the creature. In such cases, the excess contraction is stored in the collagen which then efficiently begins or aids in the expansion of the mantle at the end of the jet. In some tests, the collagen has been shown to be able to begin raising mantle pressure up to 50ms before muscle activity is initiated.
These anatomical differences between squid and octopuses can help explain why squid can be found swimming comparably to fish while octopuses usually rely on other forms of locomotion on the sea floor such as bipedal walking, crawling, and non-jetting swimming.
Females of the octopus genus Argonauta secrete a specialized paper-thin egg case in which they reside, and this is popularly regarded as a "shell", although it is not attached to the body of the animal and has a separate evolutionary origin.
The largest group of shelled cephalopods, the , are extinct, but their shells are very common as .
The deposition of carbonate, leading to a mineralized shell, appears to be related to the acidity of the organic shell matrix (see Mollusc shell); shell-forming cephalopods have an acidic matrix, whereas the gladius of squid has a basic matrix. The basic arrangement of the cephalopod outer wall is: an outer (spherulitic) prismatic layer, a laminar (nacreous) layer and an inner prismatic layer. The thickness of every layer depends on the taxa. In modern cephalopods, the Ca carbonate is aragonite. As for other mollusc shells or coral skeletons, the smallest visible units are irregular rounded granules.
The tentacle consists of a thick central nerve cord (which must be thick to allow each sucker to be controlled independently) surrounded by circular and radial muscles. Because the volume of the tentacle remains constant, contracting the circular muscles decreases the radius and permits the rapid increase in length. Typically, a 70% lengthening is achieved by decreasing the width by 23%. The shorter arms lack this capability.
The size of the tentacle is related to the size of the buccal cavity; larger, stronger tentacles can hold prey as small bites are taken from it; with more numerous, smaller tentacles, prey is swallowed whole, so the mouth cavity must be larger.Nixon 1988 in
Externally shelled Nautilidae ( Nautilus and Allonautilus) have on the order of 90 finger-like appendages, termed tentacles, which lack suckers but are sticky instead, and are partly retractable.
The digestive gland itself is rather short. It has four elements, with food passing through the crop, stomach and caecum before entering the intestine. Most digestion, as well as the absorption of nutrients, occurs in the digestive gland, sometimes called the liver. Nutrients and waste materials are exchanged between the gut and the digestive gland through a pair of connections linking the gland to the junction of the stomach and caecum. Cells in the digestive gland directly release pigmented excretory chemicals into the lumen of the gut, which are then bound with mucus passed through the anus as long dark strings, ejected with the aid of exhaled water from the funnel. Cephalopods tend to concentrate ingested heavy metals in their body tissue. However, octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to be their "taste by touch" system.
Cephalopod radulae are known from fossil deposits dating back to the Ordovician. They are usually preserved within the cephalopod's body chamber, commonly in conjunction with the mandibles; but this need not always be the case; many radulae are preserved in a range of settings in the Mason Creek. Radulae are usually difficult to detect, even when they are preserved in fossils, as the rock must weather and crack in exactly the right fashion to expose them; for instance, radulae have only been found in nine of the 43 ammonite genera, and they are rarer still in non-ammonoid forms: only three pre-Mesozoic species possess one.
Nautilus, unusually, possesses four nephridia, none of which are connected to the pericardial cavities.
The incorporation of ammonia is important for shell formation in terrestrial molluscs and other non-molluscan lineages. Because protein (i.e., flesh) is a major constituent of the cephalopod diet, large amounts of are produced as waste. The main organs involved with the release of this excess ammonium are the gills. The rate of release is lowest in the shelled cephalopods Nautilus and Sepia as a result of their using nitrogen to fill their shells with gas to increase buoyancy. Other cephalopods use ammonium in a similar way, storing the (as ammonium chloride) to reduce their overall density and increase buoyancy.
The funnel of cephalopods develops on the top of their head, whereas the mouth develops on the opposite surface. The early embryological stages are reminiscent of ancestral and extant Monoplacophora.
The shells develop from the ectoderm as an organic framework which is subsequently mineralized. In Sepia, which has an internal shell, the ectoderm forms an invagination whose pore is sealed off before this organic framework is deposited.
Unlike most other molluscs, cephalopods do not have a morphologically distinct stage. Instead, the juveniles of coleoids are known as paralarvae. Paralarvae have been observed only in members of the Octopoda and Teuthida (which constitutes the modern definition of Coleoidea). In contrast, hatchling nautili are not referred to by a specific technical term, as they resemble miniatures of the adults. Neonate cephalopods quickly learn how to hunt, using encounters with prey to refine their strategies.
Growth in juveniles is usually allometric, whilst adult growth is isometric.
Possible early Cambrian remains have been found in the Avalon Peninsula, matching genetic data for a pre-Cambrian origin. However, this specimen is later shown that is a chimerical fossil.
In 2010, some researchers proposed that Nectocaris is the early cephalopod, which did not have a shell and appeared to possess jet propulsion in the manner of "derived" cephalopods, complicated the question of the order in which cephalopod features developed. However, most of other researchers do not agree that Nectocaris actually being a cephalopod or even mollusk.
Early cephalopods were likely predators near the top of the food chain. After the late Cambrian extinction led to the disappearance of many radiodonts, predatory niches became available for other animals. During the Ordovician period, the primitive cephalopods underwent pulses of diversification to become diverse and dominant in the Paleozoic and Mesozoic seas.
In the Early Palaeozoic, their range was far more restricted than today; they were mainly constrained to sublittoral regions of shallow shelves of the low latitudes, and usually occurred in association with . A more pelagic habit was gradually adopted as the Ordovician progressed. Deep-water cephalopods, whilst rare, have been found in the Lower Ordovician – but only in high-latitude waters.
The mid-Ordovician saw the first cephalopods with septa strong enough to cope with the pressures associated with deeper water, and could inhabit depths greater than 100–200 m. The direction of shell coiling would prove to be crucial to the future success of the lineages; endogastric coiling would only permit large size to be attained with a straight shell, whereas exogastric coiling – initially rather rare – permitted the spirals familiar from the fossil record to develop, with their corresponding large size and diversity. (Endogastric means the shell is curved so as the ventral or lower side is longitudinally concave (abdomen in); exogastric means the shell is curved so as the ventral side is longitudinally convex (abdomen out) allowing the funnel to be pointed backward beneath the shell.)
The ancestors of coleoids (including most modern cephalopods) and the ancestors of the modern nautilus, had diverged by the Floian Age of the Early Ordovician Period, over 470 million years ago. The Bactritida, a Devonian–Triassic group of orthocones, are widely held to be paraphyletic without the coleoids and ammonoids, that is, the latter groups arose from within the Bactritida. An increase in the diversity of the coleoids and ammonoids is observed around the start of the Devonian period and corresponds with a profound increase in fish diversity. This could represent the origin of the two derived groups.
Unlike most modern cephalopods, most ancient varieties had protective shells. These shells at first were conical but later developed into curved nautiloid shapes seen in modern nautilus species.
Competitive pressure from fish is thought to have forced the shelled forms into deeper water, which provided an evolutionary pressure towards shell loss and gave rise to the modern coleoids, a change which led to greater metabolic costs associated with the loss of buoyancy, but which allowed them to recolonize shallow waters. However, some of the straight-shelled evolved into Belemnitida. The loss of the shell may also have resulted from evolutionary pressure to increase maneuverability, resulting in a more fish-like habit.
There has been debate on the embryogenesis of cephalopod appendages. Until the mid-20th century, the "Arms as Head" hypothesis was widely recognized. In this theory, the arms and tentacles of cephalopods look similar to the head appendages of gastropods, suggesting that they might be homologous structures. Cephalopod appendages surround the mouth, so logically they could be derived from embryonic head tissues. However, the "Arms as Foot" hypothesis, proposed by Adolf Naef in 1928, has increasingly been favoured; for example, fate mapping of limb buds in the chambered nautilus indicates that limb buds originate from "foot" embryonic tissues.
Within the California two-spot octopus genome there are substantial replications of two gene families. Significantly, the expanded gene families were only previously known to exhibit replicative behaviour within vertebrates. The first gene family was identified as the which are attributed to neuron development. Protocadherins function as cell adhesion molecules, essential for Synaptogenesis. The mechanism for protocadherin gene family replication in vertebrates is attributed to complex splicing, or cutting and pasting, from a locus. Following the sequencing of the California two-spot octopus, researchers found that the protocadherin gene family in cephalopods has expanded in the genome due to tandem gene duplication. The different replication mechanisms for protocadherin genes indicate an independent evolution of protocadherin gene expansion in vertebrates and invertebrates. Analysis of individual cephalopod protocadherin genes indicate independent evolution between species of cephalopod. A species of shore squid Doryteuthis pealeii with expanded protocadherin gene families differ significantly from those of the California two-spot octopus suggesting gene expansion did not occur before speciation within cephalopods. Despite different mechanisms for gene expansion, the two-spot octopus protocadherin genes were more similar to vertebrates than squid, suggesting a convergent evolution mechanism. The second gene family known as are small proteins that function as zinc transcription factors. are understood to moderate DNA, RNA and protein functions within the cell.
The sequenced California two spot octopus genome also showed a significant presence of transposable elements as well as transposon expression. Although the role of transposable elements in marine vertebrates is still relatively unknown, significant expression of transposons in nervous system tissues have been observed. In a study conducted on vertebrates, the expression of transposons during development in the fruitfly Drosophila melanogaster activated genomic diversity between neurons. This diversity has been linked to increased memory and learning in mammals. The connection between transposons and increased neuron capability may provide insight into the observed intelligence, memory and function of cephalopods.
Using long-read sequencing, researchers have decoded the cephalopod genomes and discovered they have been churned and scrambled. The genes were compared to those of thousands of other species and while blocks of three or more genes co-occurred between squid and octopus, the blocks of genes were not found together in any other animals'. Many of the groupings were in the nervous tissue, suggesting the course they adapted their intelligence.
The internal phylogeny of the cephalopods is difficult to constrain; many molecular techniques have been adopted, but the results produced are conflicting. Nautilus tends to be considered an outgroup, with Vampyroteuthis forming an outgroup to other squid; however in one analysis the nautiloids, octopus and teuthids plot as a polytomy. Some molecular phylogenies do not recover the mineralized coleoids ( Spirula, Sepia, and Metasepia) as a clade; however, others do recover this more parsimonious-seeming clade, with Spirula as a sister group to Sepia and Metasepia in a clade that had probably diverged before the end of the Triassic.
Molecular estimates for clade divergence vary. One 'statistically robust' estimate has Nautilus diverging from Octopus at .
Class Cephalopoda († indicates extinct groups)
Other classifications differ, primarily in how the various decapodiformes orders are related, and whether they should be orders or families.
Nautiloids in general (Teichert and Moore, 1964) sequence as given.
Paleozoic Ammonoidea (Miller, Furnish and Schindewolf, 1957)
Mesozoic Ammonoidea (Arkel et al., 1957)
Subsequent revisions include the establishment of three Upper Cambrian orders, the Plectronocerida, Protactinocerida, and Yanhecerida; separation of the pseudorthocerids as the Pseudorthocerida, and elevating orthoceratid as the Subclass Orthoceratoidea.
The coleoids, despite some doubts, appear from molecular data to be monophyletic.
The kraken is a legendary sea monster of giant proportions said to dwell off the coasts of Norway and Greenland, usually portrayed in art as a giant cephalopod attacking ships. Carl Linnaeus included it in the first edition of his 1735 Systema Naturae. In a Hawaiian creation myth that says the present cosmos is the last of a series which arose in stages from the ruins of the previous universe, the octopus is the lone survivor of the previous, alien universe. The Akkorokamui is a gigantic tentacled monster from Ainu people folklore.
A battle with an octopus plays a significant role in Victor Hugo's book Travailleurs de la mer ( Toilers of the Sea), relating to his time in exile on Guernsey.
Ian Fleming's 1966 short story collection Octopussy and The Living Daylights, and the 1983 Octopussy were partly inspired by Hugo's book.
Japanese erotic art, shunga, includes ukiyo-e woodblock prints such as Katsushika Hokusai's 1814 print Tako to ama (The Dream of the Fisherman's Wife), in which an ama diver is sexually intertwined with a large and a small octopus.
Its many arms that emanate from a common center means that the octopus is sometimes used to symbolize a powerful and manipulative organization.
Biology
Nervous system and behavior
Senses
Vision
Photoreception
Hearing
Use of light
Coloration
Chromatophores
Adaptive value
Origin
Convergent evolution
Ink
Circulatory system
Respiration
Locomotion and buoyancy
Octopus vs. squid locomotion
Shell
Head appendages
Feeding
Radula
Excretory system
Reproduction and life cycle
Sexual maturity
Fertilization
Male–male competition
Mate choice
Sexual dimorphism
Embryology
Development
Evolution
Genetics
Phylogeny
Taxonomy
Suprafamilial classification of the Treatise
Shevyrev classification
Cladistic classification
In culture
See also
Further reading
External links
|
|