Deuterium ( hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium atomic nucleus ( deuteron) contains one proton and one neutron, whereas the far more common H has no neutrons.
The name deuterium comes from Greek , meaning "second". American chemist Harold Urey discovered deuterium in 1931. Urey and others produced samples of heavy water in which the H had been highly concentrated. The discovery of deuterium won Urey a Nobel Prize in 1934.
Nearly all deuterium found in nature was synthesized in the Big Bang 13.8 billion years ago, forming the primordial ratio of H to H (~26 deuterium nuclei per 10 hydrogen nuclei). Deuterium is subsequently produced by the slow stellar proton–proton chain, but rapidly destroyed by exothermic Nuclear fusion. The deuterium–deuterium reaction has the second-lowest Lawson criterion, and is the most astrophysically accessible, occurring in both stars and brown dwarfs.
The gas giant planets display the primordial ratio of deuterium. Comets show an elevated ratio similar to Earth's oceans (156 deuterium nuclei per 10 hydrogen nuclei). This reinforces theories that much of Earth's ocean water is of cometary origin. — see fig. 7. for a review of D/H ratios in various astronomical objects The deuterium ratio of comet 67P/Churyumov–Gerasimenko, as measured by the Rosetta space probe, is about three times that of Earth water. This figure is the highest yet measured in a comet, thus deuterium ratios continue to be an active topic of research in both astronomy and climatology.
Deuterium is used in most , many fusion power experiments, and as the most effective neutron moderator, primarily in heavy water nuclear reactors. It is also used as an isotopic label, in biogeochemistry, Deuterium NMR, and .
The reduced mass of the system in these equations is close to the mass of a single electron, but differs from it by a small amount about equal to the ratio of mass of the electron to the nucleus. For H, this amount is about , or 1.000545, and for H it is even smaller: , or 1.0002725. The energies of electronic spectra lines for H and H therefore differ by the ratio of these two numbers, which is 1.000272. The wavelengths of all deuterium spectroscopic lines are shorter than the corresponding lines of light hydrogen, by 0.0272%. In astronomical observation, this corresponds to a blue Doppler shift of 0.0272% of the speed of light, or 81.6 km/s.
The differences are much more pronounced in vibrational spectroscopy such as infrared spectroscopy and Raman spectroscopy, and in rotational spectra such as microwave spectroscopy because the reduced mass of the deuterium is markedly higher than that of protium. In nuclear magnetic resonance spectroscopy, deuterium has a very different NMR frequency (e.g. 61 MHz when protium is at 400 MHz) and is much less sensitive. Deuterated solvents are usually used in protium NMR to prevent the solvent from overlapping with the signal, though deuterium NMR on its own right is also possible.
Through much of the few minutes after the Big Bang during which nucleosynthesis could have occurred, the temperature was high enough that the mean energy per particle was greater than the binding energy of weakly bound deuterium; therefore, any deuterium that was formed was immediately destroyed. This situation is known as the deuterium bottleneck. The bottleneck delayed formation of any helium-4 until the Universe became cool enough to form deuterium (at about a temperature equivalent to 100 keV). At this point, there was a sudden burst of element formation (first deuterium, which immediately fused into helium). However, very soon thereafter, at twenty minutes after the Big Bang, the Universe became too cool for any further nuclear fusion or nucleosynthesis. At this point, the elemental abundances were nearly fixed, with the only change as some of the radioactive products of Big Bang nucleosynthesis (such as tritium) decay. The deuterium bottleneck in the formation of helium, together with the lack of stable ways for helium to combine with hydrogen or with itself (no stable nucleus has a mass number of 5 or 8) meant that an insignificant amount of carbon, or any elements heavier than carbon, formed in the Big Bang. These elements thus required formation in stars. At the same time, the failure of much nucleogenesis during the Big Bang ensured that there would be plenty of hydrogen in the later universe available to form long-lived stars, such as the Sun.
The existence of deuterium on Earth, elsewhere in the Solar System (as confirmed by planetary probes), and in the spectra of , is also an important datum in cosmology. Gamma radiation from ordinary nuclear fusion dissociates deuterium into protons and neutrons, and there is no known natural process other than Big Bang nucleosynthesis that might have produced deuterium at anything close to its observed natural abundance. Deuterium is produced by the rare cluster decay, and occasional absorption of naturally occurring neutrons by light hydrogen, but these are trivial sources. There is thought to be little deuterium in the interior of the Sun and other stars, as at these temperatures the nuclear fusion reactions that consume deuterium happen much faster than the proton–proton reaction that creates deuterium. However, deuterium persists in the outer solar atmosphere at roughly the same concentration as in Jupiter, and this has probably been unchanged since the origin of the Solar System. The natural abundance of H seems to be a very similar fraction of hydrogen, wherever hydrogen is found, unless there are obvious processes at work that concentrate it.
The existence of deuterium at a low but constant primordial fraction in all hydrogen is another one of the arguments in favor of the Big Bang over the Steady State theory of the Universe. The observed ratios of hydrogen to helium to deuterium in the universe are difficult to explain except with a Big Bang model. It is estimated that the abundances of deuterium have not evolved significantly since their production about 13.8 billion years ago. Measurements of Milky Way galactic deuterium from ultraviolet spectral analysis show a ratio of as much as 23 atoms of deuterium per million hydrogen atoms in undisturbed gas clouds, which is only 15% below the WMAP estimated primordial ratio of about 27 atoms per million from the Big Bang. This has been interpreted to mean that less deuterium has been destroyed in star formation in the Milky Way galaxy than expected, or perhaps deuterium has been replenished by a large in-fall of primordial hydrogen from outside the galaxy. In space a few hundred light years from the Sun, deuterium abundance is only 15 atoms per million, but this value is presumably influenced by differential adsorption of deuterium onto carbon dust grains in interstellar space.
The abundance of deuterium in Jupiter's atmosphere has been directly measured by the Galileo space probe as 26 atoms per million hydrogen atoms. ISO-SWS observations find 22 atoms per million hydrogen atoms in Jupiter. and this abundance is thought to represent close to the primordial Solar System ratio. This is about 17% of the terrestrial ratio of 156 deuterium atoms per million hydrogen atoms.
Comets such as Comet Hale–Bopp and Halley's Comet have been measured to contain more deuterium (about 200 atoms per million hydrogens), ratios which are enriched with respect to the presumed protosolar nebula ratio, probably due to heating, and which are similar to the ratios found in Earth seawater. The recent measurement of deuterium amounts of 161 atoms per million hydrogen in Comet 103P/Hartley (a former Kuiper belt object), a ratio almost exactly that in Earth's oceans (155.76 ± 0.1, but in fact from 153 to 156 ppm), emphasizes the theory that Earth's surface water may be largely from comets. Most recently the HHR of 67P/Churyumov–Gerasimenko as measured by Rosetta is about three times that of Earth water. This has caused renewed interest in suggestions that Earth's water may be partly of asteroidal origin.
Deuterium has also been observed to be concentrated over the mean solar abundance in other terrestrial planets, in particular Mars and Venus.
In theory, deuterium for heavy water could be created in a nuclear reactor, but separation from ordinary water is the cheapest bulk production process.
The world's leading supplier of deuterium was Atomic Energy of Canada Limited until 1997, when the last heavy water plant was shut down. Canada uses heavy water as a neutron moderator for the operation of the CANDU reactor design.
Another major producer of heavy water is India. All but one of India's atomic energy plants are pressurized heavy water plants, which use natural (i.e., not enriched) uranium. India has eight heavy water plants, of which seven are in operation. Six plants, of which five are in operation, are based on D–H exchange in ammonia gas. The other two plants extract deuterium from natural water in a process that uses hydrogen sulfide gas at high pressure.
While India is self-sufficient in heavy water for its own use, India also exports reactor-grade heavy water.
Data at about 18 K for H (triple point):
The physical properties of deuterium compounds can exhibit significant kinetic isotope effects and other physical and chemical property differences from the protium analogs. HO, for example, is more viscous than normal . There are differences in bond energy and length for compounds of heavy hydrogen isotopes compared to protium, which are larger than the isotopic differences in any other element. Bonds involving deuterium and tritium are somewhat stronger than the corresponding bonds in protium, and these differences are enough to cause significant changes in biological reactions. Pharmaceutical firms are interested in the fact that H is harder to remove from carbon than H.
Deuterium can replace H in water molecules to form heavy water (HO), which is about 10.6% denser than normal water (so that ice made from it sinks in normal water). Heavy water is slightly toxic in eukaryotic animals, with 25% substitution of the body water causing cell division problems and sterility, and 50% substitution causing death by cytotoxic syndrome (bone marrow failure and gastrointestinal lining failure). Prokaryotic organisms, however, can survive and grow in pure heavy water, though they develop slowly. Despite this toxicity, consumption of heavy water under normal circumstances does not pose a health threat to humans. It is estimated that a person might drink of heavy water without serious consequences.
The triplet deuteron nucleon is barely bound at , and none of the higher energy states are bound. The singlet deuteron is a virtual state, with a negative binding energy of . There is no such stable particle, but this virtual particle transiently exists during neutron–proton inelastic scattering, accounting for the unusually large neutron scattering cross-section of the proton.
The charge radius of a deuteron is
Like the proton radius, measurements using deuterium produce a smaller result: .
The proton and neutron in deuterium can be dissociated through neutral current interactions with . The cross section for this interaction is comparatively large, and deuterium was successfully used as a neutrino target in the Sudbury Neutrino Observatory experiment.
Diatomic deuterium (H) has ortho and para nuclear spin isomers like diatomic hydrogen, but with differences in the number and population of spin states and rotational levels, which occur because the deuteron is a boson with nuclear spin equal to one.
Isospin is an SU(2) symmetry, like ordinary spin, so is completely analogous to it. The proton and neutron, each of which have isospin-1/2, form an isospin doublet (analogous to a spin doublet), with a "down" state (↓) being a neutron and an "up" state (↑) being a proton. A pair of nucleons can either be in an antisymmetric state of isospin called Singlet state, or in a symmetric state called Spin triplet. In terms of the "down" state and "up" state, the singlet is
This is a nucleus with one proton and one neutron, i.e. a deuterium nucleus. The triplet is
The deuteron, being an isospin singlet, is antisymmetric under nucleons exchange due to isospin, and therefore must be symmetric under the double exchange of their spin and location. Therefore, it can be in either of the following two different states:
In the first case the deuteron is a spin triplet, so that its total spin s is 1. It also has an even parity and therefore even orbital angular momentum l. The lower its orbital angular momentum, the lower its energy. Therefore, the lowest possible energy state has , .
In the second case the deuteron is a spin singlet, so that its total spin s is 0. It also has an odd parity and therefore odd orbital angular momentum l. Therefore, the lowest possible energy state has , .
Since gives a stronger nuclear attraction, the deuterium ground state is in the , state.
The same considerations lead to the possible states of an isospin triplet having , or , . Thus, the state of lowest energy has , , higher than that of the isospin singlet.
The analysis just given is in fact only approximate, both because isospin is not an exact symmetry, and more importantly because the strong nuclear interaction between the two nucleons is related to angular momentum in spin–orbit interaction that mixes different s and l states. That is, s and l are not constant in time (they do not commutativity with the Hamiltonian), and over time a state such as , may become a state of , . Parity is still constant in time, so these do not mix with odd l states (such as , ). Therefore, the quantum state of the deuterium is a superposition (a linear combination) of the , state and the , state, even though the first component is much bigger. Since the total angular momentum j is also a good quantum number (it is a constant in time), both components must have the same j, and therefore . This is the total spin of the deuterium nucleus.
To summarize, the deuterium nucleus is antisymmetric in terms of isospin, and has spin 1 and even (+1) parity. The relative angular momentum of its nucleons l is not well defined, and the deuteron is a superposition of mostly with some .
Since the proton and neutron have different values for g and g, one must separate their contributions. Each gets half of the deuterium orbital angular momentum and spin . One arrives at
By using the same identities as here and using the value , one gets the following result, in units of the nuclear magneton μ
For the , state (), we obtain
For the , state (), we obtain
The measured value of the deuterium magnetic dipole moment, is , which is 97.5% of the value obtained by simply adding moments of the proton and neutron. This suggests that the state of the deuterium is indeed to a good approximation , state, which occurs with both nucleons spinning in the same direction, but their magnetic moments subtracting because of the neutron's negative moment.
But the slightly lower experimental number than that which results from simple addition of proton and (negative) neutron moments shows that deuterium is actually a linear combination of mostly , state with a slight admixture of , state.
The electric dipole is zero as usual.
The measured electric quadrupole of the deuterium is . While the order of magnitude is reasonable, since the deuteron radius is of order of 1 femtometer (see below) and its electric charge is e, the above model does not suffice for its computation. More specifically, the electric quadrupole does not get a contribution from the state (which is the dominant one) and does get a contribution from a term mixing the and the states, because the electric quadrupole operator does not commute with angular momentum.
The latter contribution is dominant in the absence of a pure contribution, but cannot be calculated without knowing the exact spatial form of the nucleons wavefunction inside the deuterium.
Higher magnetic and electric cannot be calculated by the above model, for similar reasons.
In , liquid H is used in cold sources to moderate neutrons to very low energies and wavelengths appropriate for scattering experiments.
Experimentally, deuterium is the most common nuclide used in nuclear fusion reactor designs, especially in combination with tritium, because of the large reaction rate (or nuclear cross section) and high energy yield of the deuterium–tritium (DT) reaction. There is an even higher-yield H–He fusion reaction, though the breakeven point of H–He is higher than that of most other fusion reactions; together with the scarcity of He, this makes it implausible as a practical power source, at least until DT and deuterium–deuterium (DD) fusion have been performed on a commercial scale. Commercial nuclear fusion is not yet an accomplished technology.
Nuclear magnetic resonance spectroscopy can also be used to obtain information about the deuteron's environment in isotopically labelled samples (deuterium NMR). For example, the configuration of hydrocarbon chains in lipid bilayers can be quantified using solid state deuterium NMR with deuterium-labelled lipid molecules.
Deuterium NMR spectra are especially informative in the solid state because of its relatively small quadrupole moment in comparison with those of bigger quadrupolar nuclei such as chlorine-35, for example.
Measurements of small variations in the natural abundances of deuterium, along with those of the stable heavy oxygen isotopes O and O, are of importance in hydrology, to trace the geographic origin of Earth's waters. The heavy isotopes of hydrogen and oxygen in rainwater (meteoric water) are enriched as a function of the temperature of the region where the precipitation falls (and thus enrichment is related to latitude). The relative enrichment of the heavy isotopes in rainwater (as referenced to mean ocean water), when plotted against temperature falls predictably along a line called the global meteoric water line (GMWL). This plot allows samples of precipitation-originated water to be identified along with general information about the climate in which it originated. Evaporative and other processes in bodies of water, and also ground water processes, also differentially alter the ratios of heavy hydrogen and oxygen isotopes in fresh and salt waters, in characteristic and often regionally distinctive ways. The ratio of concentration of H to H is usually indicated with a delta as δH and the geographic patterns of these values are plotted in maps termed as isoscapes. Stable isotopes are incorporated into plants and animals and an analysis of the ratios in a migrant bird or insect can help suggest a rough guide to their origins.
Hydrogen is an important and major component in all materials of organic chemistry and life science, but it barely interacts with X-rays. As hydrogen atoms (including deuterium) interact strongly with neutrons; neutron scattering techniques, together with a modern deuteration facility, fills a niche in many studies of macromolecules in biology and many other areas.
The amount inferred for normal abundance of deuterium was so small (only about 1 atom in 6400 hydrogen atoms in seawater 156) that it had not noticeably affected previous measurements of (average) hydrogen atomic mass. This explained why it hadn't been suspected before. Urey was able to concentrate water to show partial enrichment of deuterium. Lewis, Urey's graduate advisor at Berkeley, had prepared and characterized the first samples of pure heavy water in 1933. The discovery of deuterium, coming before the discovery of the neutron in 1932, was an experimental shock to Nuclear physics; but when the neutron was reported, making deuterium's existence more explicable, Urey was awarded the Nobel Prize in Chemistry only three years after the isotope's isolation. Lewis was deeply disappointed by the Nobel Committee's decision in 1934 and several high-ranking administrators at Berkeley believed this disappointment played a central role in his suicide a decade later.Coffey (2008): 221–222.
During World War II, Nazi Germany was known to be conducting experiments using heavy water as moderator for a nuclear reactor design. Such experiments were a source of concern because they might allow them to produce plutonium for an atomic bomb. Ultimately it led to the Allied operation called the "Norwegian heavy water sabotage", the purpose of which was to destroy the Vemork deuterium production/enrichment facility in Norway. At the time this was considered important to the potential progress of the war.
After World War II ended, the Allies discovered that Germany was not putting as much serious effort into the program as had been previously thought. The Germans had completed only a small, partly built experimental reactor (which had been hidden away) and had been unable to sustain a chain reaction. By the end of the war, the Germans did not even have a fifth of the amount of heavy water needed to run the reactor, partially due to the Norwegian heavy water sabotage operation. However, even if the Germans had succeeded in getting a reactor operational (as the U.S. did with Chicago Pile-1 in late 1942), they would still have been at least several years away from the development of an atomic bomb. The engineering process, even with maximal effort and funding, required about two and a half years (from first critical reactor to bomb) in both the U.S. and U.S.S.R., for example.
Within a few years, so-called "dry" hydrogen bombs were developed that did not need cryogenic hydrogen. Released information suggests that all thermonuclear weapons built since then contain chemical compounds of deuterium and lithium in their secondary stages. The material that contains the deuterium is mostly lithium deuteride, with the lithium consisting of the isotope lithium-6. When the lithium-6 is bombarded with fast from the atomic bomb, tritium (hydrogen-3) is produced, and then the deuterium and the tritium quickly engage in thermonuclear fusion, releasing abundant energy, helium-4, and even more free neutrons. "Pure" fusion weapons such as the Tsar Bomba are believed to be obsolete. In most modern ("boosted") thermonuclear weapons, fusion directly provides only a small fraction of the total energy. Fission of a natural uranium-238 tamper by fast neutrons produced from D–T fusion accounts for a much larger (i.e. boosted) energy release than the fusion reaction itself.
"Heavy water" experiments in World War II
In thermonuclear weapons
Modern research
Antideuterium
See also
External links
|
|