Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in the water, and in various specialised fish by motions of the fish fin. The major forms of locomotion in fish are:
In addition, some fish can variously "walk" (i.e., crawl over land using the pectoral and pelvic fins), burrow in mud, leap out of the water and even gliding flight temporarily through the air.
Consider the tilapia shown in the diagram. Like most fish, the tilapia has a streamlined body shape reducing water resistance to movement and enabling the tilapia to cut easily through water. Its head is inflexible, which helps it maintain forward thrust. Its Fish scale overlap and point backwards, allowing water to pass over the fish without unnecessary obstruction. Water friction is further reduced by mucus which tilapia secrete over their body.
The backbone is flexible, allowing muscles to contract and relax rhythmically and bring about undulating movement. A swim bladder provides buoyancy which helps the fish adjust its vertical position in the water column. A lateral line system allows it to detect vibrations and pressure changes in water, helping the fish to respond appropriately to external events.
Well developed fins are used for maintaining balance, braking and changing direction. The pectoral fins act as pivots around which the fish can turn rapidly and steer itself. The paired pectoral and pelvic fins control pitching, while the unpaired dorsal and anal fins reduce yawing and rolling. The caudal fin provides raw power for propelling the fish forward.
Many fish swim using combined behavior of their two pectoral fins or both their anal and dorsal fins. Different types of Median paired fin propulsion can be achieved by preferentially using one fin pair over the other, and include rajiform, diodontiform, amiiform, gymnotiform and balistiform modes.
The habitats occupied by fishes are often related to their swimming capabilities. On coral reefs, the faster-swimming fish species typically live in wave-swept habitats subject to fast water flow speeds, while the slower fishes live in sheltered habitats with low levels of water movement.
Fish do not rely exclusively on one locomotor mode, but are rather locomotor generalists, choosing among and combining behaviors from many available behavioral techniques. Predominantly body-caudal fin swimmers often incorporate movement of their Fish anatomy as an additional stabilizing mechanism at slower speeds, but hold them close to their body at high speeds to improve streamlining and reducing drag. Zebrafish have even been observed to alter their locomotor behavior in response to changing hydrodynamic influences throughout growth and maturation.
Because flying fish are primarily aquatic animals, their body density must be close to that of water for buoyancy stability. This primary requirement for swimming, however, means that flying fish are heavier (have a larger mass) than other habitual fliers, resulting in higher wing loading and lift to drag ratios for flying fish compared to a comparably sized bird. Differences in wing area, wing span, wing loading, and aspect ratio have been used to classify flying fish into two distinct classifications based on these different aerodynamic designs.
Comparatively, Cypselurus flying fish have lower wing loading and smaller aspect ratios (i.e. broader wings) than their flying fish monoplane counterparts, which contributes to their ability to fly for longer distances than fish with this alternative body plan. Flying fish with the biplane design take advantage of their high lift production abilities when launching from the water by utilizing a taxiing in which the hypocaudal lobe remains in the water to generate thrust even after the trunk clears the water's surface and the wings are opened with a small angle of attack for lift generation.
Most commonly, walking fish are amphibious fish. Able to spend longer times out of water, these fish may use a number of means of locomotion, including springing, snake-like lateral undulation, and tripod-like walking. The are probably the best land-adapted of contemporary fish and are able to spend days moving about out of water and can even climb , although to only modest heights. The Climbing gourami is often specifically referred to as a "walking fish", although it does not actually "walk", but rather moves in a jerky way by supporting itself on the extended edges of its gill plates and pushing itself by its fins and tail. Some reports indicate that it can also climb trees.
There are a number of fish that are less adept at actual walking, such as the walking catfish. Despite being known for "walking on land", this fish usually wriggles and may use its pectoral fins to aid in its movement. Walking Catfish have a respiratory system that allows them to live out of water for several days. Some are invasive species. A notorious case in the United States is the Northern snakehead. "Maryland Suffers Setback in War on Invasive Walking Fish", National Geographic News
July 12, 2002 Bichir have rudimentary lungs and can also move about on land, though rather clumsily. The Mangrove rivulus can survive for months out of water and can move to places like hollow logs. Shells, trees and bottoms: Strange places fish live Fish Lives in Logs, Breathing Air, for Months at a Time Fish Lives in Logs, Breathing Air, for Months at a Time
There are some species of fish that can "walk" along the sea floor but not on land; one such animal is the Dactylopteridae (it does not actually fly, and should not be confused with flying fish). The batfishes of the family Ogcocephalidae (not to be confused with batfish of Ephippidae) are also capable of walking along the sea floor. Bathypterois grallator, also known as a "tripodfish", stands on its three fins on the bottom of the ocean and hunts for food. The African lungfish ( P. annectens) can use its fins to "walk" along the bottom of its tank in a manner similar to the way amphibians and land vertebrates use their limbs on land.
Fish uses fins to walk and bound Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes A Small Step for Lungfish, a Big Step for the Evolution of Walking
The larvae of ray finned fishes, the Actinopterygii, swim at a quite large range of Reynolds number (Re ≈10 to 900). This puts them in an intermediate flow regime where both inertial and viscous forces play an important role. As the size of the larvae increases, the use of pressure forces to swim at higher Reynolds number increases.
Undulatory swimmers generally shed at least two types of wake: Carangiform swimmers shed connected vortex loops and Anguilliform swimmers shed individual vortex rings. These vortex rings depend upon the shape and arrangement of the trailing edge from which the vortices are shed. These patterns depend upon the swimming speed, ratio of swimming speed to body wave speed and the shape of body wave.
A spontaneous bout of swimming has three phases. The first phase is the start or acceleration phase: In this phase the larva tends to rotate its body to make a 'C' shape which is termed the preparatory stroke. It then pushes in the opposite direction to straighten its body, which is called a propulsive stroke, or a power stroke, which powers the larva to move forward. The second phase is cyclic swimming. In this phase, the larva swims with an approximately constant speed. The last phase is deceleration. In this phase, the swimming speed of the larva gradually slows down to a complete stop. In the preparatory stroke, due to the bending of the body, the larva creates 4 vortices around its body, and 2 of those are shed in the propulsive stroke. Similar phenomena can be seen in the deceleration phase. However, in the vortices of the deceleration phase, a large area of elevated vorticity can be seen compared to the starting phase.
The swimming abilities of larval fishes are important for survival. This is particularly true for the larval fishes with higher metabolic rate and smaller size which makes them more susceptible to predators. The swimming ability of a reef fish larva helps it to settle at a suitable reef and for locating its home as it is often isolated from its home reef in search of food. Hence the swimming speed of reef fish larvae are quite high (≈12 cm/s - 100 cm/s) compared to other larvae."Critical Swimming Speeds of Late-Stage Coral Reef Fish Larvae: Variation within Species, Among Species and Between Locations"
Larval fishes start feeding at 5–7 days post fertilization. And they experience extreme mortality rate (≈99%) in the few days after feeding starts. The reason for this 'Critical Period' (Hjort-1914) is mainly hydrodynamic constraints. Larval fish fail to eat even if there are enough prey encounters. One of the primary determinants of feeding success is the size of larval body. The smaller larvae function in a lower Reynolds number (Re) regime. As the age increases, the size of the larvae increases, which leads to higher swimming speed and increased Reynolds number. It has been observed through many experiments that the Reynolds number of successful strikes (Re~200) is much higher than the Reynolds number of failed strikes (Re~20). Numerical analysis of suction feeding at a low Reynolds number concluded that around 40% energy invested in mouth opening is lost to frictional forces rather than contributing to accelerating the fluid towards mouth. Ontogenetic improvement in the sensory system, coordination and experiences are non-significant relationship while determining feeding success of larvae A successful strike positively depends upon the peak flow speed or the speed of larvae at the time of strike. The peak flow speed is also dependent on the gape speed or the speed of opening the buccal cavity to capture food. As the larva ages, its body size increase and its gape speed also increase, which cumulatively increase the successful strike outcomes.
The ability of a larval prey to survive an encounter with predator totally depends on its ability to sense and evade the strike. Adult fishes exhibit rapid suction feeding strikes as compared to larval fishes. Sensitivity of larval fish to velocity and flow fields provides the larvae a critical defense against predation. Though many prey use their visual system to detect and evade predators when there is light, it is hard for the prey to detect predators at night, which leads to a delayed response to the attack. There is a mechano-sensory system in fishes to identify the different flow generated by different motion surrounding the water and between the bodies called as lateral line system. After detecting a predator, a larva evades its strike by 'fast start' or 'C' response. A swimming fish disturbs a volume of water ahead of its body with a flow velocity that increases with the proximity to the body. This particular phenomenon is sometimes called a bow wave. The timing of the 'C' start response affects escape probability inversely. Escape probability increases with the distance from the predator at the time of strike. In general, prey successfully evade a predator strike from an intermediate distance (3–6 mm) from the predator.
Rajiform
Diodontiform
Amiiform
Gymnotiform
Balistiform
Oscillatory
Tetraodontiform
Labriform
Dynamic lift
Hydrodynamics
Body-caudal fin
Adaptation
Flight
Tradeoffs
Biplane body plan
Monoplane body plan
Walking
Burrowing
In larvae
Swimming
/ref>"Development of Swimming Abilities in Reef Fish Larvae" by Rebecca Fisher, David R. Bellwood, Suresh D. Job in Marine Ecology-progress Series - MAR ECOL-PROGR SER. 202. 163-173. 10.3354/meps202163 The swimming speeds of larvae from the same families at the two locations are relatively similar. However, the variation among individuals is quite large. At the species level, length is significantly related to swimming ability. However, at the family level, only 16% of variation in swimming ability can be explained by length. There is also a negative correlation between the
/ref> This again leads to sustainable variability in their ability to alter dispersal patterns, overall dispersal distances and control their temporal and spatial patterns of settlement.'Development of Swimming Abilities in Reef Fish Larvae' by Rebecca Fisher, David R. Bellwood, Suresh D. Job in Marine Ecology-progress Series - MAR ECOL-PROGR SER. 202. 163-173. 10.3354/meps202163
Hydrodynamics
Behavior
See also
Further reading
External links
|
|