Aminoglycoside is a medicinal and bacteriology category of traditional Gram-negative antibacterial that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar).E.g., see www.merriam-webster.com/medical/aminoglycoside: "any of a group of antibiotics (as streptomycin and neomycin) that inhibit bacterial protein synthesis and are active especially against gram-negative bacteria". The term can also refer more generally to any organic molecule that contains amino sugar substructures. Aminoglycoside display bactericidal activity against Gram-negative aerobes and some anaerobic bacilli where resistance has not yet arisen but generally not against Gram-positive and anaerobic Gram-negative bacteria.ME Levison, MD, 2012, Aminoglycosides, The Merck Manual [1], accessed 22 February 2014.
Streptomycin is the first-in-class aminoglycoside antibiotic. It is derived from Streptomyces griseus and is the earliest modern agent used against tuberculosis. Streptomycin lacks the common 2-deoxystreptamine moiety (image right, below) present in most other members of this class. Other examples of aminoglycosides include the deoxystreptamine-containing agents kanamycin, tobramycin, gentamicin, and neomycin (see below).
In the following gallery, kanamycin A to netilmicin are examples of the 4,6-disubstituted deoxystreptamine sub-class of aminoglycosides, the neomycins are examples of the 4, 5-disubstituted sub-class, and streptomycin is an example of a non-deoxystreptamine aminoglycoside.
The inhibition of protein synthesis is mediated through aminoglycosides' energy-dependent, sometimes irreversible binding, to the , membrane-associated bacterial ribosome (image at right). (Aminoglycosides first cross bacterial cell walls—lipopolysaccharide in gram-negative bacteria—and cell membranes, where they are active transport.) While specific steps in protein synthesis affected may vary somewhat between specific aminoglycoside agents, as can their affinity and degree of binding, aminoglycoside presence in the cytosol generally disturbs peptide elongation at the 30S ribosome subunit, giving rise to inaccurate mRNA translation and therefore biosynthesis of proteins that are truncated, or bear altered amino acid compositions at particular points. Specifically, binding impairs translational proofreading leading to misreading of the RNA message, premature termination, or both, and so to inaccuracy of the translated protein product. The subset of aberrant proteins that are incorporated into the bacterial cell membrane may then lead to changes in its permeability and then to "further stimulation of aminoglycoside transport". The amino sugar portion of this class of molecules (e.g., the 2-deoxystreptamine in kanamycins, gentamicins, and tobramycin, see above) are implicated in the association of the small molecule with ribosomal structures that lead to the infidelities in translation (ibid.). Inhibition of ribosomal translocation—i.e., movement of the peptidyl-tRNA from the A- to the P-site—has also been suggested. Recent single-molecule tracking experiments in live E. coli showed an ongoing but slower protein synthesis upon treatment with different aminoglycoside drugs. (Spectinomycin, a related but distinct chemical structure class often discussed with aminoglycosides, does not induce mRNA misreading and is generally not bactericidal.)
It has been proposed that aminoglycoside antibiotics cause oxidation of guanine nucleotides in the bacterial nucleotide pool, and that this contributes to the cytotoxicity of these antibiotics. The incorporation of oxidized guanine nucleotides into DNA could be bactericidal since incomplete repair of closely spaced 8-oxo-2'-deoxyguanosine in the DNA can result in lethal double-strand breaks.
Finally, a further "cell-membrane effect" also occurs with aminoglycosides; "functional integrity of the bacterial cell membrane" can be lost, later in time courses of aminoglycoside exposure and transport.As Boothe notes, "high concentrations of aminoglycosides may cause nonspecific membrane toxicity, even to the point of bacterial cell lysis", though the physiologic relevance of these concentrations to specific clinical situations is unclear. DVM Boothe, DVM, PhD, 2012, Aminoglycosides (Aminocyclitols), The Merck Veterinary Manual , accessed 22 February 2014.
As noted, aminoglycosides are mostly ineffective against anaerobic bacteria, fungi, and viruses. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past, the aminoglycosides have been used in conjunction with beta-lactam antibiotics in streptococcal infections for their synergistic effects, in particular in endocarditis. One of the most frequent combinations is ampicillin (a beta-lactam, or penicillin-related antibiotic) and gentamicin. Often, hospital staff refer to this combination as "amp and gent" or more recently called "pen and gent" for penicillin and gentamicin.
Aminoglycosides are in pregnancy category D, Merck Manual: Bacteria and Antibacterial Drugs: Aminoglycosides Last full review/revision July 2009 by Matthew E. Levison, MD that is, there is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.
Another serious and disabling side effect of aminoglycoside use is vestibular ototoxicity. This leads to oscillopsia (gaze instability) and balance impairments that impact all aspects of an individual's antigravity function. This loss is permanent and can happen at any dose.
Frequent use of aminoglycosides could result in kidney damage (Acute kidney injury), that could lead to chronic kidney disease.
Aminoglycosides are contraindicated in patients with mitochondrial diseases as they may result in impaired mtDNA translation, which can lead to irreversible hearing loss, tinnitus, cardiac toxicity, and renal toxicity. However, hearing loss and tinnitus have also been observed in some patients without mitochondrial diseases.referenced in See Also
Pharmacokinetics and pharmacodynamics
Indications
Nonsense suppression
Routes of administration
Clinical use
Adverse effects
Contraindication for specific diseases
External links
|
|