The alveolates (meaning "pitted like a honeycomb") are a group of , considered a major unranked clade or Phylum within Eukaryote. They are currently grouped with the and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup supergroup.
Almost all sequenced mitochondrial genomes of ciliates and apicomplexa are linear. The mitochondria almost all carry mtDNA of their own but with greatly reduced genome sizes. Exceptions are Cryptosporidium which are left with only a mitosome, the circular mitochondrial genomes of Acavomonas and Babesia microti, and Toxoplasma
The Acavomonidia and Colponemidia were previously grouped together as colponemids, a taxon now split because each has a distinctive organization or ultrastructural identity. The Acavomonidia are closer to the dinoflagellate/perkinsid group than the Colponemidia are. As such, the informal term "colponemids", as it stands currently, covers two non-sister groups within Alveolata: the Acavomonidia and the Colponemidia.
The Apicomplexa and dinoflagellates may be more closely related to each other than to the ciliates. Both have , and most share a bundle or cone of at the top of the cell. In apicomplexans this forms part of a complex used to enter host cells, while in some colorless dinoflagellates it forms a peduncle used to ingest prey. Various other genera are closely related to these two groups, mostly flagellates with a similar apical structure. These include free-living members in Oxyrrhis and Colponema, and parasites in Perkinsus, Parvilucifera, Rastrimonas and the . In 2001, direct amplification of the rRNA gene in marine picoplankton samples revealed the presence of two novel alveolate lineages, called group I and II. Group I has no cultivated relatives, while group II is related to the dinoflagellate parasite Amoebophrya, which was classified until now in the Syndiniales dinoflagellate order.
Some studies suggested the Ascetosporea, mostly parasites of marine invertebrates, might belong here, but they lack alveoli and are now placed among the Cercozoa.
The ellobiopsids are of uncertain relation within the alveolates. Silberman et al 2004 establish that the Thalassomyces genus of ellobiopsids are alveolates using phylogenetic analysis, however no more certainty exists on their place.
The ancestors of the alveolate group may have been photosynthetic. The ancestral alveolate probably possessed a plastid. Chromerids, apicomplexans, and peridinin dinoflagellates have retained this organelle. Going one step even further back, the chromerids, the peridinin dinoflagellates and the Heterokont have been argued to possess a monophyletic plastid lineage in common, i.e. acquired their plastids from a red alga, and so it seems likely that the common ancestor of alveolates and heterokonts was also photosynthetic.
In one school of thought the common ancestor of the dinoflagellates, apicomplexans, Colpodella, Chromerida, and Voromonas was a myzocytotic predator with two heterodynamic flagella, , , rhoptries, , a polar ring and a coiled open sided conoid. While the common ancestor of alveolates may also have possessed some of these characteristics, it has been argued that Myzocytosis was not one of these characteristics, as ciliates ingest prey by a different mechanism.
An ongoing debate concerns the number of membranes surrounding the plastid across apicomplexans and certain dinoflagellates, and the origin of these membranes. This ultrastructural character can be used to group organisms and if the character is in common, it can imply that phyla had a common photosynthetic ancestor. On the basis that apicomplexans possess a plastid surrounded by four membranes, and that peridinin dinoflagellates possess a plastid surrounded by three membranes, Petersen et al. have been unable to rule out that the shared stramenopile-alveolate plastid could have been recycled multiple times in the alveolate phylum, the source being stramenopile-alveolate donors, through the mechanism of ingestion and endosymbiosis.
Ciliates are a model alveolate, having been genetically studied in great depth over the longest period of any alveolate lineage. They are unusual among eukaryotes in that reproduction involves a micronucleus and a macronucleus. Their reproduction is easily studied in the lab, and made them a model eukaryote historically. Being entirely predatory and lacking any remnant plastid, their development as a phylum illustrates how predation and autotrophy are in dynamic balance and that the balance can swing one way or other at the point of origin of a new phylum from mixotrophic ancestors, causing one ability to be lost.
Phylogeny
Taxonomy
Development
Evolution
Epigenetics
External links
|
|