Ankylopollexia is an extinct clade of ornithischian dinosaurs that lived from the Late Jurassic to the Late Cretaceous. It is a derived clade of iguanodontian and contains the subgroup Styracosterna. The name stems from the Greek word, "ankylos", mistakenly taken to mean stiff, fused (in fact the adjective means bent or curved; used of fingers, it can mean hooked), and the Latin word, "pollex", meaning thumb. Originally described in 1986 by Sereno, a most likely synapomorphic feature of a conical thumb spine defines the clade.Sereno, P.C. (1986). "Phylogeny of the bird-hipped dinosaurs (order Ornithischia)". National Geographic Research 2 (2): 234–56
First appearing around 156 million years ago, in the Jurassic, Ankylopollexia became an extremely successful and widespread clade during the Cretaceous, and were found around the world. The group died out at the end of the Maastrichtian. They grew to be quite large, comparable to some carnivorous dinosaurs and they were universally herbivorous.Foster, J. (2007). Camptosaurus dispar. Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Indiana University Press. p. 219-221
The cladogram below follows the phylogenetic analysis of Bertozzo et al. (2017).
Hadrosaurs have been noted as having the most complex brains among ankylopollexians, and indeed among ornithischian dinosaurs as a whole. The brains of a large variety of taxa have been studied. John Ostrom, would, in 1961, provide what was then the most extensive and detailed review and work on hadrosaur neuro-anatomy. This area of hadrosaur study was in its infancy at this point, and only the species known today as Edmontosaurus annectens, Edmontosaurus regalis, and Gryposaurus notabilis (at that time thought to be a synonym of its relative Kritosaurus) had specimens suitable at the time to be examined ( Lambeosaurus was listed as having a briefly described braincase, but this was a mistake originating in Lull and Wright (1942)). Ostrom supported the view that the brains of hadrosaurs and other dinosaurs would've likely only filled a portion of the cranial cavity, therefore hindering the ability to learn from endocasts, but noted they were still useful. He noted, similar to Marsh, noted the small predicted size of the organ, but also that it was significantly developed. A number of similarities to the brains of modern reptiles were noted. James Hopson investigated the encephalization quotients (EQs) of various dinosaurs in 1977 study. Three ornithopods for which brain endocasts had previously been produced – Camptosaurus, Iguanodon, and Anatosaurus (now known as Edmontosaurus annectens) – were investigated. It was found that they had relatively high EQs compared to many other dinosaurs (ranging from 0.8 to 1.5), comparable to that of and of modern , but far lower than that of theropods. The latter two genera, which lived later than Camptosaurus, had somewhat higher EQs than the Jurassic taxon, which, being at the lower end, was more comparable to the ceratopsian genus Protoceratops. Reasonings suggested for their comparably high intelligence were the need for acute senses in the lack of defensive weapons, and more complex intraspecific behaviours as indicated by their acoustic and visual display structures.
In a first for any terrestrial fossil vertebrate, Brasier et al. (2017) reported mineralized soft tissues from the brain of an iguanodontian dinosaur, from the Valanginian age (around 133 million years ago) Upper Tunbridge Wells Formation at Bexhill-on-Sea, Sussex. Fragmentary ornithopod remains were associated with the fossil, and though assigning the specimen to any one taxon with certainty wasn't possible, Barilium or Hypselospinus were put forward as likely candidates. The specimen compared well to endocasts of similar taxa, such as one from a Mantellisaurus on display at the Oxford University Museum of Natural History. Detailed observations were made with the use of a scanning electron microscope. Only some parts of the brain were preserved; the cerebellum and cerebrum were best preserved, whereas the olfactory lobes and medulla oblongata were missing or nearly so. The seemed to be very tightly packed, indicating an EC closer to five (with hadrosaurs having even higher ECs), nearly matching that of the most intelligent non-avian theropods. Though it was noted this was in-line with their complex behaviour, as had been noted by Hopson, it was cautioned the dense packing may have been an artifact of preservation, and the original lower estimates were considered more accurate. Some of the complex behaviours ascribed can be seen to some extent in modern crocodilians, who fall near the original numbers. The advent of CT scanning for use in palaeontology has allowed for more widespread application of this without the need for specimen destruction. Modern research using these methods has focused largely on hadrosaurs. In a 2009 study by palaeontologist David C. Evans and colleagues, the brains of various lambeosaurine hadrosaur genera were scanned and compared to each other, related taxa, and previous predictions. Contra the early works, Evans' studies indicate that only some regions of the hadrosaur brain were loosely correlated to the brain wall. As with previous studies, EQ values were investigated; even the lowest end of the determined EQ range was still higher than that of modern reptiles and most non-maniraptoran dinosaurs, though fell well short of maniraptorans themselves. The size of the cerebral hemispheres was, for the first time, remarked upon, being far larger than in other ornithischians and all large saurischian dinosaurs; maniraptorans Conchoraptor and Archaeopteryx had very similar proportions. This lends further support to the idea of complex behaviours and relatively high intelligence, for non-avian dinosaurs, in hadrosaurids. Lambeosaurine Amurosaurus was the subject of a 2013 paper once again looking into a cranial endocast. A once again high EQ range was found, higher than that of living reptiles, and other ornithischians, but different EQ estimates for theropods were cited, placing the hadrosaur numbers significantly below the majority of theropods. Additionally, the relative cerebral volume was only 30% in Amurosaurus, significantly lower than in Hypacrosaurus, closer to that of theropods like Tyrannosaurus, though still distinctly larger than previously estimated numbers for more primitive iguanodonts. This demonstrated a previously unrecognized level of variation in neuro-anatomy within Hadrosauridae.
|
|